$\let\divisionsymbol\div \let\oldRe\Re \let\oldIm\Im$

On this page, you will find all the commands featured on this website. Since there are many commands, it may take some time to load. For lighter pages, you can visit the subject-specific pages, which can be accessed through the hidden menu in the header or the menu in the footer.

日本語ページ

Formula

Number

fraction

$\frac{1}{2}$

\frac{1}{2}
Copy

\frac comes from "fraction". The first wave brackets is for the numerator and the second is for the denominator.

fraction large

$\displaystyle \frac{1}{2}$

\displaystyle \frac{1}{2}
Copy

If you add "\displaystyle", it will be displayed larger.

fraction large 2

$\dfrac{1}{2}$

\dfrac{1}{2}
Copy

\dfrac means \frac in \displaystyle.

fraction one line

$\require{physics} \flatfrac{1}{2}$

\require{physics} \flatfrac{1}{2}
Copy

\flatfrac in the physics extension allows you to write fractions on a line. You can also use the sign / to write "1/2".

fraction and parentheses

$\left( -\frac{1}{2} \right)^2$

\left( -\frac{1}{2} \right)^2
Copy

To keep the fractions in parentheses, prefix the brackets with \left and \right.

fraction and parentheses 2

$\require{physics} \qty( -\frac{1}{2} )^2$

\require{physics} \qty( -\frac{1}{2} )^2
Copy

\qty in the physics extension allows you to write parenthesized fractions a little simpler. \qty comes from physical quantity.

continued fraction

$\frac{a+b}{c+\frac{d}{e}}$

\frac{a+b}{c+\frac{d}{e}}
Copy

Fractions can be nested.

continued fraction 2

$\cfrac{a+b}{c+\cfrac{d}{e}}$

\cfrac{a+b}{c+\cfrac{d}{e}}
Copy

With \cfrac, the size of the fraction will be the same. \cfrac comes from continued fraction. Using \dfrac would produce a similar display.

infinite continued fraction

$\begin{eqnarray} 1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\ddots}}} = \frac{1}{2} \left( 1+\sqrt{5} \right) \end{eqnarray}$

\begin{eqnarray}
1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\ddots}}}
= \frac{1}{2} \left( 1+\sqrt{5} \right)
\end{eqnarray}
Copy

The diagonal dots indicate that it goes on forever.

decimal

$0.123$

0.123
Copy

A period is used for the decimal point.

repeating decimal

$\frac{1}{11} = 0.\dot{0}\dot{9}$

\frac{1}{11} = 0.\dot{0}\dot{9}
Copy

To add dot on top of a number, use \dot.

infinite decimal 1

$\pi = 3.14 \ldots$

\pi = 3.14 \ldots
Copy

Here's a sample to add three points to the bottom.

infinite decimal 2

$\sqrt{2} = 1.4142 \cdots$

\sqrt{2} = 1.4142 \cdots
Copy

Here's a sample to add three points in the middle.

infty

$\infty$

\infty
Copy

\infty comes from "infinity".

absolute value

$|x|$

|x|
Copy

Absolute values can be represented by a vertical line symbol.

absolute value 2

$\vert x \vert$

\vert x \vert
Copy

A vertical line used for absolute values can also be represented by vert, which comes from vertical line.

fraction and absolute value

$\left| \dfrac{x}{2} \right|$

\left| \dfrac{x}{2} \right|
Copy

If you add \left and \right before the vertical lines, the vertical lines will be longer to match the size of the fraction.

fraction and absolute value 2

$\require{physics} \qty|\dfrac{x}{2}|$

\require{physics} \qty|\dfrac{x}{2}|
Copy

\qty in the physics extension allows you to write fractions with absolute value symbols a little simpler. \qty comes from physical quantity.

fraction and absolute value 3

$\require{physics} \abs{ \dfrac{x}{2} }$

\require{physics} \abs{ \dfrac{x}{2} }
Copy

\abs in the physics extension allows you to write fractions with absolute value symbols. \abs comes from "absolute value".

Gaussian brackets

$[x]$

[x]
Copy

The Gauss brackets can be represented by a square bracket symbol.

Gaussian brackets 2

$\lbrack x \rbrack$

\lbrack x \rbrack
Copy

The Gauss brackets can also be represented with \lbrack and \rblack. They come from the left bracket and the right bracket.

floor function

$\lfloor x \rfloor$

\lfloor x \rfloor
Copy

They come from "floor function".

ceiling function

$\lceil x \rceil$

\lceil x \rceil
Copy

They come from "ceiling function".

Gaussian brackets sample

$\begin{eqnarray} [x] = \lfloor x \rfloor = \max\{ n\in\mathbb{Z} \mid n \leqq x \} \end{eqnarray}$

\begin{eqnarray}
[x]
= \lfloor x \rfloor
= \max\{ n\in\mathbb{Z} \mid n \leqq x \}
\end{eqnarray}
Copy

The definition of the Gaussian brackets.

Arithmetic Operation

plus

$1 + 2$

1 + 2
Copy

We use the symbols as it is.

minus

$3 - 1$

3 - 1
Copy

We use the symbols as it is.

times

$2 \times 3$

2 \times 3
Copy

It comes from reading "2 x 3" as "2 times 3".

divide

$6 \divisionsymbol 3$

6 \div 3
Copy

\div comes from "divide". If you are using the physics extension, the div will be overwritten. So you must duplicate it before it is overwritten.

plus minus

$\pm 1$

\pm 1
Copy

\pm comes from "plus and minus".

minus plus

$\mp 1$

\mp 1
Copy

\mp comes from "minus and plus".

times dot

$a \cdot b = ab$

a \cdot b = ab
Copy

\cdot comes from "center dot".

divide fraction

$a \divisionsymbol b = \frac{a}{b}$

a \div b = \frac{a}{b}
Copy

This is the relationship between division and fractions.

column multiplication

$\begin{array}{r} 67 \\[-3pt] \underline{\times\phantom{0}63}\\[-3pt] 201 \\[-3pt] \underline{\phantom{0}402\phantom{0}} \\[-3pt] 4221 \end{array}$

\begin{array}{r}
67 \\[-3pt]
\underline{\times\phantom{0}63}\\[-3pt]
201 \\[-3pt]
\underline{\phantom{0}402\phantom{0}} \\[-3pt]
4221
\end{array}
Copy

The array environment is used to specify right-justification. If you use underline, a line will be drawn underneath the text. The phantom allocates a space for the characters you specify. -3pt is a way of writing to reduce the width of a line break a little.

column division

$\begin{array}{r} 7.6 \\[-3pt] 25\enclose{longdiv}{190\phantom{0}} \\[-3pt] \underline{175\phantom{.0}} \\[-3pt] 15\phantom{.}0 \\[-3pt] \underline{15\phantom{.}0} \\[-3pt] \phantom{000}0 \end{array}$

\begin{array}{r}
  7.6 \\[-3pt]
25\enclose{longdiv}{190\phantom{0}} \\[-3pt]
  \underline{175\phantom{.0}} \\[-3pt]
  15\phantom{.}0 \\[-3pt]
  \underline{15\phantom{.}0} \\[-3pt]
  \phantom{000}0
\end{array}
Copy

You can use \enclose{longdiv} to represent the long division. The phantom is used to substitute whitespace for the specified characters and align them.

modular equivalence

$a \equiv b \mod n$

a \equiv b \mod n
Copy

\mod and \equiv come from modular arithmetic and equivalence. Three lines are for describe equivalence.

modular equivalence with parentheses

$a \equiv b \pmod n$

a \equiv b \pmod n
Copy

\pmod means "mod with parentheses".

modular equivalence like binary operator

$\gcd(a, b) = \gcd(b, a \bmod b)$

\gcd(a, b) = \gcd(b, a \bmod b)
Copy

\bmod means "mod used like a binary operator".

proportional

$x \propto y$

x \propto y
Copy

\propto comes from "proportional to".

Greater or Less

greater than

$a \gt b$

a \gt b
Copy

In MathJax, we use \gt because > has a special meaning on the web. It comes from "greater than".

greater than or equal

$a \geq b$

a \geq b
Copy

\geq is a combination of "greater than" and "equal".

greater than or equal 2

$a \geqq b$

a \geqq b
Copy

If you use \geqq, you will have one more horizontal line than with \geq.

less than

$a \lt b$

a \lt b
Copy

In MathJax, we use \lt because < has a special meaning on the web. It comes from "less than".

less than or equal

$a \leq b$

a \leq b
Copy

\leq is a combination of "less than" and "equal".

less than or equal 2

$a \leqq b$

a \leqq b
Copy

If you use \leqq, you will have one more horizontal line than with \leq.

equal

$a = b$

a = b
Copy

We use the symbols as it is.

not equal

$a \neq b$

a \neq b
Copy

\neq comes from "not equal". It can also be written as \ne or \not=.

nearly equal

$a \fallingdotseq b$

a \fallingdotseq b
Copy

\fallingdotseq is a combination of "falling dots" and "equal".

nearly equal 2

$a \sim b$

a \sim b
Copy

\sim comes from "similar".

nearly equal 3

$a \simeq b$

a \simeq b
Copy

It is a combination of "similar" and "equal". If you write \eqsim, the symbols above and below will be swapped

nearly equal 4

$a \approx b$

a \approx b
Copy

\approx comes from "approximately".

much greater than

$a \gg b$

a \gg b
Copy

If you write "\gg", two > overlap.. If you write "\ggg", three > overlap.

much less than

$a \ll b$

a \ll b
Copy

If you write "\ll", two < overlap.. If you write "\lll", three < overlap.

maximum

$\max f(x)$

\max f(x)
Copy
minimum

$\min f(x)$

\min f(x)
Copy
max sample

$\begin{eqnarray} \max ( a, b ) = \begin{cases} a & ( a \geqq b ) \\ b & ( a \lt b ) \end{cases} \end{eqnarray}$

\begin{eqnarray}
\max ( a, b )
=
  \begin{cases}
    a & ( a \geqq b ) \\
    b & ( a \lt b )
  \end{cases}
\end{eqnarray}
Copy

The eqnarray environment is used to display multiple expressions. The cases environment is used to write cases.

Multiple Line Equations

line break

$\begin{eqnarray} aaa \\ bbb \end{eqnarray}$

\begin{eqnarray}
aaa \\
bbb
\end{eqnarray}
Copy

To display a multi-line expression, we use the eqnarray environment. A line break is not reflected in the expression. To start a new line, we put "\\".

big line break

$\begin{eqnarray} aaa \\[5pt] bbb \end{eqnarray}$

\begin{eqnarray}
aaa \\[5pt]
bbb
\end{eqnarray}
Copy

You can change the size of a line break by using square brackets after "\\", e.g. \\[5pt].

alignment

$\begin{eqnarray} x + 2x &=& 3 \\ x &=& 1 \end{eqnarray}$

\begin{eqnarray}
x + 2x &=& 3 \\
x &=& 1
\end{eqnarray}
Copy

You can use "&" to align the position.

simultaneous equations

$\begin{eqnarray} \left\{ \begin{array}{l} x + y = 10 \\ 2x + 4y = 32 \end{array} \right. \end{eqnarray}$

\begin{eqnarray}
  \left\{
    \begin{array}{l}
      x + y = 10 \\
      2x + 4y = 32
    \end{array}
  \right.
\end{eqnarray}
Copy

You can use "\left\{" and "\right." to represent the big curly bracket on the left side of the simultaneous equations.

case

$\begin{eqnarray} |x| = \begin{cases} x & ( x \geqq 0 ) \\ -x & ( x \lt 0 ) \end{cases} \end{eqnarray}$

\begin{eqnarray}
|x|
 =
  \begin{cases}
    x & ( x \geqq 0 ) \\
    -x & ( x \lt 0 )
  \end{cases}
\end{eqnarray}
Copy

The cases environment can be used to display for piecewise-defined functions.

Set

belong to

$x \in A$

x \in A
Copy

\in comes from "x is in A".

belong to 2

$A \ni x$

A \ni x
Copy

Reversing \in to \ni changes the direction of the symbol.

not belong to

$x \notin A$

x \notin A
Copy

\notin comes from "x is not in A".

subset

$A \subset B$

A \subset B
Copy

It shows A is a subset of B.

subset 2

$A \subseteq B$

A \subseteq B
Copy

\subseteq means "subset or equal".

subset 3

$A \subseteqq B$

A \subseteqq B
Copy

If you repeat q, the two lines are shown on the bottom.

superset

$A \supset B$

A \supset B
Copy

This shows A is a superset of B.

superset 2

$A \supseteq B$

A \supseteq B
Copy

\supseteq means "superset or equal".

superset 3

$A \supseteqq B$

A \supseteqq B
Copy

If you repeat q, the two lines are shown on the bottom.

not subset

$A \not \subset B$

A \not \subset B
Copy

If you combine \not and \subset, the slashed line will be added.

proper subset

$A \subsetneqq B$

A \subsetneqq B
Copy

This shows A is a proper subset of B. If you use \supsetneqq, that shows A is a proper superset of B.

intersection

$A \cap B$

A \cap B
Copy
union

$A \cup B$

A \cup B
Copy
empty set

$\varnothing$

\varnothing
Copy

The symbol is for an empty set, which comes from "nothing". It is similar to but different from the Greek letter phi.

empty set 2

$\emptyset$

\emptyset
Copy

The symbol is for an empty set, which comes from "empty set". It is similar to but different from the Greek letter phi.

complement set

$A^c$

A^c
Copy

"c" comes from "complement set".

complement set 2

$\overline{ A }$

\overline{ A }
Copy

You can also draw a line over the set to represent the complementary set.

complement set sample

$\overline{ (A\cap B) } = \overline{ A } \cup \overline{ B }$

\overline{ (A\cap B) } = \overline{ A } \cup \overline{ B }
Copy

This is De Morgan's Law.

complement set sample 2

$\begin{eqnarray} \left( \bigcup_{\lambda\in\Lambda}A_{\lambda} \right)^c =\bigcap_{\lambda\in\Lambda}A_{\lambda}^c \end{eqnarray}$

\begin{eqnarray}
\left( \bigcup_{\lambda\in\Lambda}A_{\lambda} \right)^c
=\bigcap_{\lambda\in\Lambda}A_{\lambda}^c
\end{eqnarray}
Copy

This is De Morgan's Law too.

set difference

$A \setminus B$

A \setminus B
Copy

\setminus means a difference set. It is similar to backslash, but differs that \setminus contains a space before and after it.

set difference sample

$A \setminus B = A \cap B^c = \{ x \in A \mid x \notin B \}$

A \setminus B
= A \cap B^c
= \{ x \in A \mid x \notin B \}
Copy

This is the definition of a difference set.

symmetric difference

$A \triangle B$

A \triangle B
Copy

The symmetric difference is represented by a triangle.

symmetric difference sample

$A \triangle B = (A \setminus B) \cup (B \setminus A)$

A \triangle B
= (A \setminus B) \cup (B \setminus A)
Copy

This is the definition of the symmetric difference.

all natural numbers

$\mathbb{ N }$

\mathbb{ N }
Copy

This is the blackboard bold.

all integers

$\mathbb{ Z }$

\mathbb{ Z }
Copy
all rational numbers

$\mathbb{ Q }$

\mathbb{ Q }
Copy
all real numbers

$\mathbb{ R }$

\mathbb{ R }
Copy
all complex numbers

$\mathbb{ C }$

\mathbb{ C }
Copy
all quaternions

$\mathbb{ H }$

\mathbb{ H }
Copy
supremum

$\sup A$

\sup A
Copy
infimum

$\inf A$

\inf A
Copy
aleph number

$\aleph$

\aleph
Copy

It is used to express the cardinality of an infinite set.

Logic Notation

implication

$P \implies Q$

P \implies Q
Copy
implication 2

$P \Rightarrow Q$

P \Rightarrow Q
Copy

The right arrow is sometimes used to indicate "implication".

implication 3

$P \to Q$

P \to Q
Copy

The single line arrow may be used to indicate "implication".

implication reverse

$P \Leftarrow Q$

P \Leftarrow  Q
Copy
implication reverse 2

$P \gets Q$

P \gets  Q
Copy

A single arrow to the left.

equivalence

$P \iff Q$

P \iff Q
Copy

\iff means "if and only if".

equivalence 2

$P \Leftrightarrow Q$

P \Leftrightarrow Q
Copy

The left right double arrow may be used to indicate "equivalence".

equivalence 3

$P \leftrightarrow Q$

P \leftrightarrow Q
Copy

The left right arrow may be used to indicate "equivalence".

equivalence 4

$P \equiv Q$

P \equiv Q
Copy

\equiv comes from "equivalence".

therefore

$\therefore$

\therefore
Copy
because

$\because$

\because
Copy
for all

$\forall x$

\forall x
Copy

This is Turned A.

for some

$\exists x$

\exists x
Copy

This is Turned E.

not exists

$\nexists$

\nexists
Copy

\nexists come from "not" and "exists".

quantifier sample

$\begin{eqnarray} & & {}^\forall \varepsilon \gt 0, {}^\exists \delta \gt 0 \mbox{ s.t. } \\ & & {}^\forall x \in \mathbb{ R }, 0 \lt |x - a| \lt \delta \implies |f(x) - b| \lt \varepsilon \end{eqnarray}$

\begin{eqnarray}
& & {}^\forall \varepsilon \gt 0, {}^\exists \delta \gt 0 \mbox{ s.t. } \\
& & {}^\forall x \in \mathbb{ R }, 0 \lt |x - a| \lt \delta
\implies |f(x) - b| \lt \varepsilon 
\end{eqnarray}
Copy

This is the (ε, δ)-definition of limit.

logical conjunction

$P \land Q$

P \land Q
Copy

\land comes from "And in logic".

logical disjunction

$P \lor Q$

P \lor Q
Copy

\lor comes from "Or in logic".

negation

$\lnot P$

\lnot P
Copy

\lnot comes from "Not in logic".

negation 2

$\overline{ P }$

\overline{ P }
Copy

Another way to show negation is to draw a line over the letter.

negation 3

$!P$

!P
Copy

You can also write an "!" in front of the letter to indicate negation.

exclusive disjunction

$P \oplus Q$

P \oplus Q
Copy

A + ("plus") sign in a circle ("O") indicates an exclusive disjunction.

exclusive disjunction 2

$P \veebar Q$

P \veebar Q
Copy

This symbol is a combination of the letters V ("vee") and horizontal line ("bar"), and is sometimes used to represent an exclusive disjunction.

exclusive disjunction sample

$P \oplus Q = (P \land \lnot Q) \lor (\lnot P \land Q)$

P \oplus Q = (P \land \lnot Q) \lor (\lnot P \land Q)
Copy

This is a formula relating exclusive disjunction to logical disjunction, logical product, and negation.

tautology

$\top$

\top
Copy

This is used to show tautology. There's a horizontal line on top.

contradiction

$\bot$

\bot
Copy

This is used to show contradiction. There's a horizontal line on bottom.

provable

$P \vdash Q$

P \vdash Q
Copy

\vdash comes from "vertical line" and "dash".

logical consequence

$P \models Q$

P \models Q
Copy

The same notation applies when using \vDash instead of \models.

Permutation and Combination

permutation

${}_n \mathrm{ P }_k$

{}_n \mathrm{ P }_k
Copy

To write a small letter in the lower left corner, use "{}_". "P" is Roman type.

combination

${}_n \mathrm{ C }_k$

{}_n \mathrm{ C }_k
Copy
factorial

$n!$

n!
Copy
binomial coefficient

$\binom{ n }{ k }$

\binom{ n }{ k }
Copy

\binom comes from "binomial coefficient".係数)に由来しています。

binomial coefficient 2

${ n \choose k }$

{ n \choose k }
Copy

\choose is used to choose k from n. The braces are necessary to separate it from the preceding and following characters.

binomial coefficient 3

$\dbinom{ n }{ k }$

\dbinom{ n }{ k }
Copy

This is \binom in displaystyle.

repeated combination

${}_n \mathrm{ H }_k$

{}_n \mathrm{ H }_k
Copy
combination sample

$\begin{eqnarray} {}_n \mathrm{ C }_k = \binom{ n }{ k } = \frac{ n! }{ k! ( n - k )! } \end{eqnarray}$

\begin{eqnarray}
{}_n \mathrm{ C }_k
 = \binom{ n }{ k }
 = \frac{ n! }{ k! ( n - k )! }
\end{eqnarray}
Copy
permutation sample

$\begin{eqnarray} {}_n \mathrm{ P }_k = n \cdot ( n - 1 ) \cdots ( n - k + 1 ) = \frac{ n! }{ ( n - k )! } \end{eqnarray}$

\begin{eqnarray}
{}_n \mathrm{ P }_k
 = n \cdot ( n - 1 ) \cdots ( n - k + 1 )
 = \frac{ n! }{ ( n - k )! }
\end{eqnarray}
Copy

Summation and Product

summation

$\sum_{i=1}^{n} a_n$

\sum_{i=1}^{n} a_n
Copy

\sum comes from sum. To write expressions below and above the sigma, use "_" and "^".

summation large

$\displaystyle \sum_{i=1}^n a_n$

\displaystyle \sum_{i=1}^n a_n
Copy

If you use displaystyle, the sigma will be larger. The formula will be placed above and below the sigma.

summation sample

$\begin{eqnarray} \sum_{ k = 1 }^{ n } k^2 = \overbrace{ 1^2 + 2^2 + \cdots + n^2 }^{ n } = \frac{ 1 }{ 6 } n ( n + 1 ) ( 2n + 1 ) \end{eqnarray}$

\begin{eqnarray}
\sum_{ k = 1 }^{ n } k^2
 = \overbrace{ 1^2 + 2^2 + \cdots + n^2 }^{ n }
 = \frac{ 1 }{ 6 } n ( n + 1 ) ( 2n + 1 )
\end{eqnarray}
Copy

Using overbrace, you can display a brace on the top of the formula, and if you set the superscript, you can write text on top of the brace.

product

$\prod_{ i = 0 }^n x_i$

\prod_{ i = 0 }^n x_i
Copy

\prod comes from product.

product large

$\displaystyle \prod_{i=0}^n x_i$

\displaystyle \prod_{i=0}^n x_i
Copy
product sample

$\begin{eqnarray} n! = \prod_{ k = 1 }^n k \end{eqnarray}$

\begin{eqnarray}
n! = \prod_{ k = 1 }^n k
\end{eqnarray}
Copy

This is a sample using factorial.

product sample 2

$\begin{eqnarray} \zeta (s) = \prod_{ p:\mathrm{ prime } } \frac{ 1 }{ 1-p^{-s} } \end{eqnarray}$

\begin{eqnarray}
\zeta (s)
 = \prod_{ p:\mathrm{ prime } }
   \frac{ 1 }{ 1-p^{-s} }
\end{eqnarray}
Copy

This is a sample using the Riemann zeta function.

Exponent and Logarithm

power

$2^3$

2^3
Copy

To write a number in the upper right corner, use "^".

power 2

$e^{ i \pi }$

e^{ i \pi }
Copy

If you want to write multiple numbers or letters in the upper right corner, put them in braces.

exponential function

$\exp ( x )$

\exp ( x )
Copy
square root

$\sqrt{ 2 }$

\sqrt{ 2 }
Copy

\sqrt comes from "square root".

square root same height

$\sqrt{ \mathstrut a } + \sqrt{ \mathstrut b }$

\sqrt{ \mathstrut a } + \sqrt{ \mathstrut b }
Copy

Using \mathstrut, you can align the height of the square root.

nth root

$\sqrt[ n ]{ x }$

\sqrt[ n ]{ x }
Copy

When writing power roots, use brackets.

logarithm

$\log x$

\log x
Copy
logarithm to base

$\log_{ 2 } x$

\log_{ 2 } x
Copy

The logarithm base is specified using the "_".

natural logarithm

$\ln x$

\ln x
Copy

Shape

degree

$90^{ \circ }$

90^{ \circ }
Copy

The small circle in the upper right corner representing degrees can be represented using \circ, which comes from "circle".

radian

$\frac{ \pi }{ 2 }$

\frac{ \pi }{ 2 }
Copy
angle symbol

$\angle A$

\angle A
Copy
parallel Japanese style

$AB /\!/ CD$

AB /\!/ CD
Copy

In Japan, two "/" signs are used to indicate parallelism. "\!" can be used to close the gap.

parallel international style

$AB \parallel CD$

AB \parallel CD
Copy
perpendicular

$AB \perp CD$

AB \perp CD
Copy

\perp comes from "perpendicular".

triangle

$\triangle ABC$

\triangle ABC
Copy
quadrangle

$\Box ABCD$

\Box ABCD
Copy

You can use \Box to represent a rectangle. It starts with a capital letter.

arc

$\stackrel{\huge\frown}{AB}$

\stackrel{\huge\frown}{AB}
Copy

For arcs, since there is no proper command, we combine symbols. \forwn represents the arc symbol (looks like a frown mouth), and \huge makes it bigger. You can use \stackrel to stack the symbols on top of each other.

arc

$\overparen{AB}$

\overparen{AB}
Copy

\overparen comes from "over" and "parentheses". It allows you to put round brackets over text. However, it don't display beautifully.

congruence Japanese style

$\triangle ABC \equiv \triangle DEF$

\triangle ABC \equiv \triangle DEF
Copy

\equiv comes from "equivalent". In Japan, it is often written like this.

congruence international style

$\triangle ABC \cong \triangle DEF$

\triangle ABC \cong \triangle DEF
Copy

\cong comes from "congruent". This is the most common way to write globally.

similar Japanese style

$\triangle ABC \backsim \triangle DEF$

\triangle ABC \backsim \triangle DEF
Copy

The commonly used similarity symbol in Japan is obtained by rotating the letter S by 90 degrees. An equivalent symbol for this is "backsim." However, this symbol may feel a bit unfamiliar as it is a reversed tilde.

similar international style

$\triangle ABC \sim \triangle DEF$

\triangle ABC \sim \triangle DEF
Copy

It is derived from the concept of similarity. It is more commonly used overseas to represent similarity.

Trigonometric Function

sin

$\sin x$

\sin x
Copy
cos

$\cos x$

\cos x
Copy
tan

$\tan x$

\tan x
Copy
sin sample

$\begin{eqnarray} \sin 45^\circ = \frac{ \sqrt{2} }{ 2 } \end{eqnarray}$

\begin{eqnarray}
\sin 45^\circ
 = \frac{ \sqrt{2} }{ 2 }
\end{eqnarray}
Copy
cos sample

$\begin{eqnarray} \cos \frac{ \pi }{ 3 } = \frac{ 1 }{ 2 } \end{eqnarray}$

\begin{eqnarray}
\cos \frac{ \pi }{ 3 }
 = \frac{ 1 }{ 2 }
\end{eqnarray}
Copy
tan sample

$\begin{eqnarray} \tan \theta = \frac{ \sin \theta }{ \cos \theta } \end{eqnarray}$

\begin{eqnarray}
\tan \theta
 = \frac{ \sin \theta }{ \cos \theta }
\end{eqnarray}
Copy
sec

$\sec x$

\sec x
Copy
csc

$\csc x$

\csc x
Copy
cot

$\cot x$

\cot x
Copy
arcsin

$\arcsin x$

\arcsin x
Copy
arccos

$\arccos x$

\arccos x
Copy
arctan

$\arctan x$

\arctan x
Copy
sinh

$\sinh x$

\sinh x
Copy

Hyperbolic functions are not trigonometric functions, but I will introduce them here.

cosh

$\cosh x$

\cosh x
Copy
tanh

$\tanh x$

\tanh x
Copy
coth

$\coth x$

\coth x
Copy

Complex Number

complex number

$a+bi$

a+bi
Copy

The imaginary unit is commonly denoted by "i."

real part

$\oldRe x$

\Re x
Copy

It is derived from the term "real part."

real part 2

$\require{physics} \Re x$

\require{physics} \Re x
Copy

When using the "physics" extension, the text is represented in Roman font.

imaginary part

$\oldIm x$

\Im x
Copy

It is derived from the term "imaginary part."

imaginary part 2

$\require{physics} \Im x$

\require{physics} \Im x
Copy

When using the "physics" extension, the text is represented in Roman font.

complex conjugate

$\bar{z}$

\bar{z}
Copy

A line placed above a complex number represents its complex conjugate.

argument

$\arg (z)$

\arg (z)
Copy

It is derived from the concept of the argument.

cube roots of 1

$\omega$

\omega
Copy

The Greek letter "omega" is sometimes used to represent the cube root of 1.

complex number sample

$\begin{eqnarray} z\bar{z} = |z|^2 \end{eqnarray}$

\begin{eqnarray}
z\bar{z} = |z|^2
\end{eqnarray}
Copy

Limit

limit

$\lim_{ x \to +0 } \frac{1}{x} = \infty$

\lim_{ x \to +0 } \frac{1}{x} = \infty
Copy

It is derived from the concept of a limit.

limit large

$\displaystyle \lim_{ n \to \infty } f_n(x) = f(x)$

\displaystyle \lim_{ n \to \infty } f_n(x) = f(x)
Copy

Adding "\displaystyle" causes the expression to be displayed in a larger format. Subscripts will be positioned below the "lim" symbol.

limit superior

$\limsup_{ n \to \infty } a_n$

\limsup_{ n \to \infty } a_n
Copy

It is derived from the limit superior.

limit superior simple

$\varlimsup_{ n \to \infty } a_n$

\varlimsup_{ n \to \infty } a_n
Copy
limit inferior

$\liminf_{ n \to \infty } a_n$

\liminf_{ n \to \infty } a_n
Copy

It is derived from the limit inferior.

limit inferior simple

$\varliminf_{ n \to \infty } a_n$

\varliminf_{ n \to \infty } a_n
Copy
limit superior sample

$\begin{eqnarray} \varlimsup_{ n \to \infty } a_n = \lim_{ n \to \infty } \sup_{ k \geqq n } a_k \end{eqnarray}$

\begin{eqnarray}
\varlimsup_{ n \to \infty } a_n
 = \lim_{ n \to \infty } \sup_{ k \geqq n } a_k
\end{eqnarray}
Copy

This is an example of the limit superior of a sequence.

limit inferior sample

$\begin{eqnarray} \varliminf_{ n \to \infty } A_n = \bigcup_{ n = 1 }^{ \infty } \bigcap_{ k = n }^{ \infty } A_k = \bigcup_{ n \in \mathbb{ N } } \bigcap_{ k \geqq n } A_k \end{eqnarray}$

\begin{eqnarray}
\varliminf_{ n \to \infty } A_n
 = \bigcup_{ n = 1 }^{ \infty } \bigcap_{ k = n }^{ \infty } A_k
 = \bigcup_{ n \in \mathbb{ N } } \bigcap_{ k \geqq n } A_k
\end{eqnarray}
Copy

Here is an example of the limit inferior of a set.

Big O notation

$\mathcal{O}$

\mathcal{O}
Copy

In some cases, the symbol for Landau notation is represented using the letter "O" in calligraphy fonts.

Differentiation

differentiation Leibniz

$\frac{ dy }{ dx }$

\frac{ dy }{ dx }
Copy

This represents the derivative of y with respect to x expressed in fractional form.

differentiation Leibniz 2

$\frac{ \mathrm{ d } y }{ \mathrm{ d } x }$

\frac{ \mathrm{ d } y }{ \mathrm{ d } x }
Copy

This is the Roman font representation of "d" used in the previous example.

differentiation Leibniz 3

$\require{physics} \dv{y}{x}$

\require{physics} \dv{y}{x}
Copy

By using the "physics" extension, we can simplify the notation of "d" in Roman font. The "dv" is derived from "derivative." When we write it with a single curly bracket, only the denominator part remains.

nth differentiation Leibniz

$\frac{ d^n y }{ dx^n }$

\frac{ d^n y }{ dx^n }
Copy

This represents the expression of the nth derivative of y with respect to x in fractional form.

nth differentiation Leibniz 2

$\require{physics} \dv[n]{f}{x}$

\require{physics} \dv[n]{f}{x}
Copy

By using the "physics" extension, we can simplify the notation for the nth derivative.

differentiation Leibniz at a point

$\left. \frac{dy}{dx} \right|_{x=a}$

\left. \frac{dy}{dx} \right|_{x=a}
Copy

A long vertical line drawn on the right side represents the evaluation of the expression at x=a. It is indicated using a subscript notation.

differentiation Leibniz at a point 2

$\require{physics} \eval{\dv{y}{x}}_{x=a}$

\require{physics} \eval{\dv{y}{x}}_{x=a}
Copy

By using the "physics" extension, we can simplify the expression for the value of the derivative at x=a.

differentiation Lagrange

$f'$

f'
Copy

With the use of the apostrophe symbol (') in notation, we can represent the derivative.

second differentiation Lagrange

$f^{\prime\prime}$

f^{\prime\prime}
Copy

If using two consecutive apostrophe symbols ('') does not display correctly, the notation "\prime" can be used instead to represent the derivative.

nth differentiation Lagrange

$f^{ ( n ) }$

f^{ ( n ) }
Copy
differentiation Euler

$Df$

Df
Copy
differentiation Euler 2

$D_x f$

D_x f
Copy
nth differentiation Euler

$D^n f$

D^n f
Copy
differentiation Newton

$\dot{y} = \frac{dy}{dt}$

\dot{y} = \frac{dy}{dt}
Copy

There is also a method of representing differentiation by placing a dot above a character.

4th differentiation Newton

$\ddddot{ y } = \frac{ d^4 y }{ dt^4 }$

\ddddot{ y } = \frac{ d^4 y }{ dt^4 }
Copy

Increasing "d" increases the number of dots.

differentiation sample

$\begin{eqnarray} f'(x) = \frac{ df }{ dx } = \lim_{ \Delta x \to 0 } \frac{ f(x + \Delta x) - f(x) }{ \Delta x } \end{eqnarray}$

\begin{eqnarray}
f'(x)
 = \frac{ df }{ dx }
 = \lim_{ \Delta x \to 0 } \frac{ f(x + \Delta x) - f(x) }{ \Delta x }
\end{eqnarray}
Copy
partial differentiation

$\frac{ \partial f }{ \partial x }$

\frac{ \partial f }{ \partial x }
Copy

It is derived from the partial derivative.

2nd partial differentiation

$\frac{ \partial }{ \partial y } \frac{ \partial }{ \partial x } z$

\frac{ \partial }{ \partial y } \frac{ \partial }{ \partial x } z
Copy
nth partial differentiation

$\frac{ \partial^n f}{ \partial x^n }$

\frac{ \partial^n f}{ \partial x^n }
Copy
partial differentiation 2

$\require{physics} \pdv{f}{x}$

\require{physics} \pdv{f}{x}
Copy

By using the "physics" extension, we can simplify the notation for expressing partial derivatives.

2nd partial differentiation 2

$\require{physics} \pdv{f}{x}{y}$

\require{physics} \pdv{f}{x}{y}
Copy

By utilizing the "physics" extension, we can simplify the notation for representing second-order partial derivatives.

nth partial differentiation 2

$\require{physics} \pdv[n]{f}{x}$

\require{physics} \pdv[n]{f}{x}
Copy

By using the "physics" extension, we can simplify the notation for representing nth-order partial derivatives. Simply write "n" inside brackets to denote the order of the partial derivative.

partial differentiation simple

$f_x$

f_x
Copy
2nd partial differentiation simple

$f_{ xy }$

f_{ xy }
Copy
del

$\nabla f$

\nabla f
Copy
lapracian

$\Delta f$

\Delta f
Copy
lapracian sample

$\begin{eqnarray} \Delta \varphi = \nabla^2 \varphi = \frac{ \partial^2 \varphi }{ \partial x^2 } + \frac{ \partial^2 \varphi }{ \partial y^2 } + \frac{ \partial^2 \varphi }{ \partial z^2 } \end{eqnarray}$

\begin{eqnarray}
\Delta \varphi
 = \nabla^2 \varphi
 = \frac{ \partial^2 \varphi }{ \partial x^2 }
   + \frac{ \partial^2 \varphi }{ \partial y^2 }
   + \frac{ \partial^2 \varphi }{ \partial z^2 }
\end{eqnarray}
Copy
first derivative test table

$\begin{array}{c|ccccc} x & \cdots & -1 & \cdots & 1 & \cdots \\ \hline f’(x) & + & 0 & – & 0 & + \\ \hline f(x) & \nearrow & e & \searrow & -e & \nearrow \end{array}$

\begin{array}{c|ccccc}
  x     & \cdots & -1 & \cdots & 1 & \cdots \\ 
  \hline
  f’(x) & + & 0 & – & 0 & + \\ 
  \hline
  f(x)  & \nearrow & e & \searrow & -e & \nearrow
\end{array}
Copy

Integral

integral

$\int_0^1 f(x) dx$

\int_0^1 f(x) dx
Copy

The symbol "\int" is derived from the concept of integration. The limits of integration are represented using a subscript and a superscript.

integral large

$\displaystyle \int_{-\infty}^{ \infty } f(x) dx$

\displaystyle \int_{-\infty}^{ \infty } f(x) dx
Copy

Adding "\displaystyle" causes the expression to be displayed in a larger format. When including multiple symbols within the integral section, they are enclosed in curly brackets.

integral sample

$\begin{eqnarray} \int_0^1 x dx = \left[ \frac{x^2}{2} \right]_0^1 = \frac{1}{2} \end{eqnarray}$

\begin{eqnarray}
\int_0^1 x dx
= \left[ \frac{x^2}{2} \right]_0^1
= \frac{1}{2}
\end{eqnarray}
Copy

Here is an example of a integral calculation:

double integral

$\iint_D f(x,y) dxdy$

\iint_D f(x,y) dxdy
Copy

By stacking the symbol "i" (integral) multiple times, such as "\iint" for double integral, "\iiint" for triple integral, and "\iiiint" for quadruple integral, we represent iterated integrals.

multiple integral

$\idotsint_D f(x_1, x_2, \ldots , x_n) dx_1 \cdots dx_n$

\idotsint_D f(x_1, x_2, \ldots , x_n) dx_1 \cdots dx_n
Copy

By combining "int", "dots", and "int" together, we get the symbol "idotsint."

contour integral

$\oint_C f(z) dz$

\oint_C f(z) dz
Copy

The symbol "oint" represents a contour integral, where the "o" attached to the "int".

Vector

vector

$\vec{ a }$

\vec{ a }
Copy

The symbol "vector" is derived from the vectors.

vector 2

$\overrightarrow{ AB }$

\overrightarrow{ AB }
Copy

To place an arrow above multiple characters, the notation "overrightarrow" is used (over + right + arrow).

vector bold

$\boldsymbol{ A }$

\boldsymbol{ A }
Copy

Bold symbols, denoted using "boldsymbol," are sometimes used to represent vectors.

row vector

$( a_1, a_2, \ldots, a_n )$

( a_1, a_2, \ldots, a_n )
Copy
column vector

$\left( \begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_n \end{array} \right)$

\left(
  \begin{array}{c}
    a_1 \\
    a_2 \\
    \vdots \\
    a_n
  \end{array}
\right)
Copy
vector sample

$\begin{eqnarray} \boldsymbol{ 1 } =( \underbrace{ 1, 1, \ldots, 1 }_{ n } )^{ \mathrm{ T } } =\left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \end{array} \right) \end{eqnarray}$

\begin{eqnarray}
\boldsymbol{ 1 }
=( \underbrace{ 1, 1, \ldots, 1 }_{ n } )^{ \mathrm{ T } }
=\left(
   \begin{array}{c}
     1 \\
     1 \\
     \vdots \\
     1
   \end{array}
 \right)
\end{eqnarray}
Copy
unit vector sample

$\boldsymbol{ \rm{ e } }_k =( 0, \ldots, 0, \stackrel{k}{ 1 }, 0, \ldots, 0 )^{\mathrm{T}}$

\boldsymbol{ \rm{ e } }_k
=( 0, \ldots, 0, \stackrel{k}{ 1 }, 0, \ldots, 0 )^{\mathrm{T}}
Copy
norm

$\| x \|$

\| x \|
Copy

Combining the backslash "\" and the vertical bar "|" creates a double vertical line symbol "\\."

norm 2

$\require{physics} \norm{ \dfrac{1}{2} }$

\require{physics} \norm{ \dfrac{1}{2} }
Copy

By using the "physics" extension, the command "\norm" can be used to create double vertical lines, representing the norm. The length of the vertical lines adjusts automatically based on the size of the contents within them.

inner product

$\vec{ a } \cdot \vec{ b }$

\vec{ a } \cdot \vec{ b }
Copy
cross product

$\vec{ a } \times \vec{ b }$

\vec{ a } \times \vec{ b }
Copy

Matrix

martix parentheses

$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
Copy

If you want to enclose the matrix in parentheses, you can use the "pmatrix" (p from parentheses +matrix). If you use just "matrix" without adding "p," the matrix will be displayed without parentheses.

martix brackets

$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
Copy

To enclose a matrix in brackets, you can use the "bmatrix" (b from brackets +matrix). However, if you want the brackets to be curly brackets, you can use the "Bmatrix", with a capital "B".

martix vertical lines

$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$

\begin{vmatrix}
a & b \\
c & d
\end{vmatrix}
Copy

To enclose a matrix in vertical lines, you can use the "vmatrix" (v from vertical lines +matrix). However, if you want the vertical lines to be double lines, you can use the "Vmatrix", with a capital "V".

transposed matrix

$A^{ \mathrm{ T } }$

A^{ \mathrm{ T } }
Copy

To represent the transpose of a matrix, you can use a Roman font uppercase "T" in the top right corner of the matrix.

transposed matrix 2

${}^t \! A$

{}^t \! A
Copy

It is also common to represent the transpose of a matrix by writing a lowercase "t" in the top left corner of the matrix.

dimension

$\dim$

\dim
Copy

The notation "dimension" is derived from the dimension.

matrix rank

$\mathrm{ rank } A$

\mathrm{ rank } A
Copy
trace

$\mathrm{ Tr } A$

\mathrm{ Tr } A
Copy
determinant

$\mathrm{ det }A$

\mathrm{ det }A
Copy
determinant sample

$\begin{eqnarray} \mathrm{ det }A = | A | = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \end{eqnarray}$

\begin{eqnarray}
\mathrm{ det }A
 = | A |
 = \begin{vmatrix} a & b \\ c & d \end{vmatrix}
 = ad - bc
\end{eqnarray}
Copy
martix large

$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & I \end{pmatrix}$

\begin{pmatrix}
  a & b & c \\
  d & e & f \\
  g & h & I
\end{pmatrix}
Copy

Using the "pmatrix" environment, you can write a 3x3 matrix.

martix large

$\begin{eqnarray} \left( \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right) \end{eqnarray}$

\begin{eqnarray}
\left(
  \begin{array}{ccc}
    a & b & c \\
    d & e & f \\
    g & h & i
  \end{array}
\right)
\end{eqnarray}
Copy

Using the "array" environment, you can write a matrix. The "ccc" is for center alignment.

right alignment matrix

$\begin{eqnarray} \left( \begin{array}{rrr} 111 & 111 & 111 \\ 22 & 0.2 & -2 \\ 3 & 3 & 3 \end{array} \right) \end{eqnarray}$

\begin{eqnarray}
\left(
  \begin{array}{rrr}
    111 & 111 & 111 \\
    22 & 0.2 & -2 \\
    3 & 3 & 3
  \end{array}
\right)
\end{eqnarray}
Copy

Using the "array" environment, you can write a matrix with right alignment for each value by specifying "rrr".

mxn matrix

$\begin{eqnarray} A = \left( \begin{array}{cccc} a_{ 11 } & a_{ 12 } & \ldots & a_{ 1n } \\ a_{ 21 } & a_{ 22 } & \ldots & a_{ 2n } \\ \vdots & \vdots & \ddots & \vdots \\ a_{ m1 } & a_{ m2 } & \ldots & a_{ mn } \end{array} \right) \end{eqnarray}$

\begin{eqnarray}
A = \left(
  \begin{array}{cccc}
    a_{ 11 } & a_{ 12 } & \ldots & a_{ 1n } \\
    a_{ 21 } & a_{ 22 } & \ldots & a_{ 2n } \\
    \vdots & \vdots & \ddots & \vdots \\
    a_{ m1 } & a_{ m2 } & \ldots & a_{ mn }
  \end{array}
\right)
\end{eqnarray}
Copy

It is an example of representing an m x n matrix using multiple dots.

block matrix

$\begin{eqnarray} \left( \begin{array}{cc|cc} a & b & 0 & 0 \\ c & d & 0 & 0 \\ \hline x & y & 1 & 0 \\ z & w & 0 & 1 \\ \end{array} \right) \end{eqnarray}$

\begin{eqnarray}
\left(
  \begin{array}{cc|cc}
    a & b & 0 & 0 \\
    c & d & 0 & 0 \\
    \hline
    x & y & 1 & 0 \\
    z & w & 0 & 1 \\
  \end{array}
\right)
\end{eqnarray}
Copy

Using "|" like the "cc|cc", you can draw vertical lines between columns. The "\hline" command can be used to draw horizontal lines.

Jordan block

$\begin{eqnarray} \begin{pmatrix} \lambda & 1 & & & 0 \\ & \lambda & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & 1 \\ 0 & & & & \lambda \end{pmatrix} \end{eqnarray}$

\begin{eqnarray}
\begin{pmatrix}
  \lambda & 1 &   &  & 0 \\
    & \lambda & 1 &   &   \\
    &   & \ddots & \ddots &   \\
    &   &   & \lambda & 1  \\
  0 &   &   &   & \lambda
\end{pmatrix}
\end{eqnarray}
Copy
cofactor

$\begin{eqnarray} & & (-1)^{ i+j } \times \\[5pt] & & \quad \begin{vmatrix} a_{1,1} & \ldots & a_{1,j-1} & a_{1,j+1} & \ldots & a_{1,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1,1} & \ldots & a_{i-1, j-1} & a_{i-1, j+1} & \ldots & a_{i-1, n} \\ a_{i+1,1} & \ldots & a_{i+1, j-1} & a_{i+1, j+1} & \ldots & a_{i+1, n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & \ldots & a_{n, j-1} & a_{n, j+1} & \ldots & a_{n, n} \end{vmatrix} \end{eqnarray}$

\begin{eqnarray}
& & (-1)^{ i+j } \times \\[5pt]
& & \quad
\begin{vmatrix}
  a_{1,1} & \ldots & a_{1,j-1} & a_{1,j+1} & \ldots & a_{1,n} \\
  \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
  a_{i-1,1} & \ldots & a_{i-1, j-1} & a_{i-1, j+1} & \ldots & a_{i-1, n} \\
  a_{i+1,1} & \ldots & a_{i+1, j-1} & a_{i+1, j+1} & \ldots & a_{i+1, n} \\
  \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
  a_{n,1} & \ldots & a_{n, j-1} & a_{n, j+1} & \ldots & a_{n, n}
\end{vmatrix}
\end{eqnarray}
Copy

Table

table simple

$\begin{array}{ccc} xxx & yyy & zzz \\ 1 & 2 & 3 \end{array}$

\begin{array}{ccc}
  xxx & yyy & zzz \\
  1   & 2   & 3
\end{array}
Copy

Using the "array" environment, you can create tables. The "ccc" aligns each value in the table cells to the center.

table with vertical line

$\begin{array}{|c|c|c|} xxx & yyy & zzz \\ 1 & 2 & 3 \\ \end{array}$

\begin{array}{|c|c|c|}
  xxx & yyy & zzz \\
  1   & 2   & 3 \\
\end{array}
Copy

By using "|" like the "c|c|c" specification, you can include vertical lines to separate the columns in the table.

table with horizontal line

$\begin{array}{ccc} \hline xxx & yyy & zzz \\ \hline 1 & 2 & 3 \\ \hline \end{array}$

\begin{array}{ccc}
  \hline
  xxx & yyy & zzz \\
  \hline
  1   & 2   & 3 \\
  \hline
\end{array}
Copy

The command "\hline" is used to insert a horizontal line in a table. It is derived from hozirontal line.

table sample

$\begin{array}{c|ccccc} x & \cdots & -1 & \cdots & 1 & \cdots \\ \hline f’(x) & + & 0 & – & 0 & + \\ \hline f(x) & \nearrow & e & \searrow & -e & \nearrow \end{array}$

\begin{array}{c|ccccc}
  x     & \cdots & -1 & \cdots & 1 & \cdots \\ 
  \hline
  f’(x) & + & 0 & – & 0 & + \\ 
  \hline
  f(x)  & \nearrow & e & \searrow & -e & \nearrow
\end{array}
Copy

Commutative Diagram

commutative diagram sample

$\require{AMScd} \begin{CD} A @>{f}>> B\\ @V{gg}VV {\large\circlearrowleft} @VV{hh}V\\ C @>>{k}> D \end{CD}$

\require{AMScd}
\begin{CD}
A @>{f}>> B\\
@V{gg}VV {\large\circlearrowleft} @VV{hh}V\\
C @>>{k}> D
\end{CD}
Copy

Symbol

Line

vertical line

$| x |$

| x |
Copy
vertical line 2

$\vert x \vert$

\vert x \vert
Copy

It is derived from vertical line.

vertical line 3

$\{ x \mid x \in A \}$

\{ x \mid x \in A \}
Copy

By using the "\mid" command, you can create a vertical line that has spaces before and after it.

double vertical line

$\Vert x \Vert$

\Vert x \Vert
Copy

By using the uppercase version of the "\vert" command as "\Vert", you can create a double vertical line in your document.

double vertical line 2

$AB \parallel CD$

AB \parallel CD
Copy

By using the "\parallel" command, you can create a double vertical line that represents parallelism.

overline

$\overline{ A }$

\overline{ A }
Copy
overline 2

$\bar{ A }$

\bar{ A }
Copy
underline

$\underline{ A }$

\underline{ A }
Copy
slash

$/$

/
Copy

The slash symbol ("/") is used as is, without any additional commands or modifications.

backslash

$\backslash$

\backslash
Copy

In MathJax, the backslash "\" has a special meaning, so if you want to display it as a symbol, you need to write "\backslash".

diagonal line down

$\diagdown$

\diagdown
Copy

It is a diagonal line that slopes downwards on the right side.

diagonal line up

$\diagup$

\diagup
Copy

It is a diagonal line that slopes upwards on the right side.

cancel

$\cancel{a}$

\cancel{a}
Copy

By using the "cancel", you can create a diagonal line to cancel out specific expressions.

back cancel

$\bcancel{a}$

\bcancel{a}
Copy

The command "\bcancel" is similar to "\cancel," but it produces a diagonal line with the opposite direction.

x cancel

$\xcancel{a}$

\xcancel{a}
Copy

The command "\xcancel" creates a cross (x) symbol over the content. It can be seen as a combination of the "\cancel" and "\bcancel".

cancel arrow

$\cancelto{A}{a}$

\cancelto{A}{a}
Copy

The combination of a diagonal cancel line and an arrow.

cancel

$\begin{eqnarray} \frac{\cancel{2}}{\cancel{6}}=\frac{1}{3} \end{eqnarray}$

\begin{eqnarray}
\frac{\cancel{2}}{\cancel{6}}=\frac{1}{3}
\end{eqnarray}
Copy

By using the "cancel", you can create a diagonal line to cancel out specific expressions.

cancel arrow

$\begin{eqnarray} \frac{1}{\cancel{3}} \times \frac{\cancelto{2}{6}}{5} \end{eqnarray}$

\begin{eqnarray}
\frac{1}{\cancel{3}} \times \frac{\cancelto{2}{6}}{5}
\end{eqnarray}
Copy

The combination of a diagonal cancel line and an arrow.

lower left corner

$\llcorner$

\llcorner
Copy

The symbol "llcorner" represents the lower left corner.

lower right corner

$\lrcorner$

\lrcorner
Copy

The symbol "lrcorner" represents the lower right corner.

up left corner

$\ulcorner$

\ulcorner
Copy

The symbol "ulcorner" represents the up left corner.

up right corner

$\urcorner$

\urcorner
Copy

The symbol "urcorner" represents the up right corner.

Arrow

left arrow

$\leftarrow$

\leftarrow
Copy

Left awwor.

long left arrow

$\longleftarrow$

\longleftarrow
Copy

Long left awwor.

right arrow

$\rightarrow$

\rightarrow
Copy

Right awwor.

long right arrow

$\longrightarrow$

\longrightarrow
Copy
up arrow

$\uparrow$

\uparrow
Copy

Up arrow.

down arrow

$\downarrow$

\downarrow
Copy

Down arrow.

left right arrow

$\leftrightarrow$

\leftrightarrow
Copy

Left and right arrow (bidirectional arrow).

long left right arrow

$\longleftrightarrow$

\longleftrightarrow
Copy
up down arrow

$\updownarrow$

\updownarrow
Copy

Up and down arrow (vertical bidirectional arrow).

double left arrow

$\Leftarrow$

\Leftarrow
Copy

When you capitalize the first "l" to "L" in the command, the line becomes double.

double long left arrow

$\Longleftarrow$

\Longleftarrow
Copy
double right arrow

$\Rightarrow$

\Rightarrow
Copy
double long right arrow

$\Longrightarrow$

\Longrightarrow
Copy
double up arrow

$\Uparrow$

\Uparrow
Copy
double down arrow

$\Downarrow$

\Downarrow
Copy
double left right arrow

$\Leftrightarrow$

\Leftrightarrow
Copy
double long left right arrow

$\Longleftrightarrow$

\Longleftrightarrow
Copy
double up down arrow

$\Updownarrow$

\Updownarrow
Copy
north east arrow

$\nearrow$

\nearrow
Copy

An arrow pointing in the direction of the upper-right or northeast direction.

south east arrow

$\searrow$

\searrow
Copy

An arrow pointing in the direction of the down-right or southeast direction.

north west arrow

$\nwarrow$

\nwarrow
Copy

An arrow pointing in the direction of the upper-left or northwest direction.

south west arrow

$\swarrow$

\swarrow
Copy

An arrow pointing in the direction of the down-left or southwest direction.

arrow with bar

$\mapsto$

\mapsto
Copy

It is derived from "maps to".

long arrow with bar

$\longmapsto$

\longmapsto
Copy
over arrow

$\vec{ a }$

\vec{ a }
Copy

The arrow symbol used in vectors.

over arrow 2

$\overrightarrow{ AB }$

\overrightarrow{ AB }
Copy

You can use the notation of placing a large arrow above the character.

over left arrow

$\overleftarrow{ AB }$

\overleftarrow{ AB }
Copy
clockwise arrow

$\circlearrowright$

\circlearrowright
Copy

A clockwise circular arrow

counterclockwise arrow

$\circlearrowleft$

\circlearrowleft
Copy

A counterclockwise circular arrow

Bracket

parenthese

$( x )$

( x )
Copy

Parentheses, represented by "(" and ")", are used as they are and do not require any special notation or commands.

bracket

$[ x ]$

[ x ]
Copy

Brackets, represented by "[" and "]", are used as they are and do not require any special notation or commands.

bracket 2

$\lbrack x \rbrack$

\lbrack x \rbrack
Copy

The term "brack" is used as a shorthand for brackets "[" and "]".

square bracket

$\lceil x \rfloor$

\lceil x \rfloor
Copy

By combining the ceiling function and the floor function, you can create a notation that represents Japanese brackets.

square bracket 2

$\lfloor x \rceil$

\lfloor x \rceil
Copy
brace

$\{ x \}$

\{ x \}
Copy

Braces have special meaning, so if you want to display them as symbols, you need to use a backslash ("\") before them.

brace 2

$\lbrace x \rbrace$

\lbrace x \rbrace
Copy

You can also use the term "\brace" for braces.

angle bracket

$\langle x \rangle$

\langle x \rangle
Copy

By using the "\angle", you can create angle brackets.

big bracket

$\left[ \frac{ 1 }{ 2 } \right]$

\left[ \frac{ 1 }{ 2 } \right]
Copy

When you want to enclose a large expression within parentheses, you can use the "\left" and "\right" before the parentheses.

over brace

$\overbrace{ x + y + z }$

\overbrace{ x + y + z }
Copy

By using the "\overbrace", you can add a brace above an expression.

over brace and letter

$\overbrace{ a_1 + \cdots + a_n }^{ n }$

\overbrace{ a_1 + \cdots + a_n }^{ n }
Copy

By combining the "\overbrace" with the "^" symbol, you can add text above the brace.

under brace

$\underbrace{ x + y + z }$

\underbrace{ x + y + z }
Copy

By using the "\underbrace", you can add a brace below an expression.。

under brace and letter

$\underbrace{ a_1 + \cdots + a_n }_{ n }$

\underbrace{ a_1 + \cdots + a_n }_{ n }
Copy

By combining the "\underbrace" with the "_" symbol, you can add text below the brace.

Dot

center dot

$\cdot$

\cdot
Copy

The center dot.

center dots

$\cdots$

\cdots
Copy

By adding an "s" to the command "\cdot", you can create multiple dots instead of a single dot.

low dots

$\ldots$

\ldots
Copy

The lower dot.

vertical dots

$\vdots$

\vdots
Copy

The vertical dots.

diagonal dots

$\ddots$

\ddots
Copy

The diagonal dots.

over dot

$\dot{ a }$

\dot{ a }
Copy

By using the "\dot", you can place a small dot above a character.

over dots

$\ddot{ a }$

\ddot{ a }
Copy

By stacking the "d", you can add additional dots above the character. Each stacked "d" adds another dot, allowing you to create a sequence of up to four dots.

Circle

white circle

$\circ$

\circ
Copy

It is derived from the circle.

black circle

$\bullet$

\bullet
Copy

It is derived from the bullet point used in bullet lists.

big circle

$\bigcirc$

\bigcirc
Copy

By adding the "big" to certain commands, you can increase their size.

circle and plus

$\oplus$

\oplus
Copy

A "+" sign is placed inside the letter "o".

circle and minus

$\ominus$

\ominus
Copy

A "-" sign is placed inside the letter "o".

circle and times

$\otimes$

\otimes
Copy

A "times" (multiplication symbol) is placed inside the letter "o".

circle and dot

$\odot$

\odot
Copy

A dot is placed inside the letter "o".

Triangle

triangle

$\triangle$

\triangle
Copy
triangle down

$\triangledown$

\triangledown
Copy

Adding "down" to the "\triangle" makes it point downward.

big triangle up

$\bigtriangleup$

\bigtriangleup
Copy
big triangle down

$\bigtriangledown$

\bigtriangledown
Copy
triangle left

$\triangleleft$

\triangleleft
Copy

Adding "left" to the "triangle" indicates that the triangle is facing towards the left side.

triangle left 2

$\lhd$

\lhd
Copy

The term "lhd" is an abbreviation derived from "left-hand diamond."

triangle right

$\triangleright$

\triangleright
Copy

Adding "right" to the "triangle" indicates that the triangle is facing towards the right side.

triangle right 2

$\rhd$

\rhd
Copy

The term "rhd" is an abbreviation derived from "right-hand diamond."

triangle left and underline

$\unlhd$

\unlhd
Copy

The "unlhd" is "underline" and "lhd".

triangle right and underline

$\unrhd$

\unrhd
Copy

The "unrhd" is "underline" and "rhd".

black triangle

$\blacktriangle$

\blacktriangle
Copy

Adding "black" to the "triangle," "down triangle," "left triangle," and "right triangle" indicates that these triangle symbols are filled in black.

Rectangle

square

$\square$

\square
Copy
box

$\Box$

\Box
Copy

It is important to note that "Box" is spelled with an uppercase "B".

box and cross

$\boxplus$

\boxplus
Copy

A "+" sign (plus) is placed inside the box.

box and line

$\boxminus$

\boxminus
Copy

A "-" sign (minus) is placed inside the box.

box and x

$\boxtimes$

\boxtimes
Copy

A "times" (multiplication symbol) is placed inside the box.

box and dot

$\boxdot$

\boxdot
Copy

A dot is placed inside the box.

black square

$\blacksquare$

\blacksquare
Copy

A square shape that is filled in black.

diamond

$\diamond$

\diamond
Copy
diamond 2

$\Diamond$

\Diamond
Copy

When the "d" in "diamond" is capitalized, it represents a larger-sized diamond shape.

lozenge

$\lozenge$

\lozenge
Copy

The "lozenge" is a term used to refer to a diamond.

black lozenge

$\blacklozenge$

\blacklozenge
Copy

A lozenge shape that is filled in black.

boxed text

$\boxed{ abc }$

\boxed{ abc }
Copy

The "\boxed" is used to enclose an equation within a box.

boxed text 2

$\fbox{ abc }$

\fbox{ abc }
Copy

The "\fbox" is used to enclose text within a frame.

boxed text 3

$\bbox[yellow, 5pt, border: 2px dotted red]{abc}$

\bbox[yellow, 5pt, border: 2px dotted red]{abc}
Copy

The "\bbox" is not a native command in $\TeX$, but it can be used in MathJax to finely customize the appearance of a framed box around text or equation. It allows you to specify various settings such as background color, margin, and style by separating them with commas within the brackets, while the equation is written within braces. The "\bbox" is derived from "bounding box".

Binary Operations

asterisk

$\ast$

\ast
Copy

The "\ast" is derived from the "asterisk."

star

$\star$

\star
Copy
left line and times

$\ltimes$

\ltimes
Copy

It is a combination of the left line and the times symbol.

right line and times

$\rtimes$

\rtimes
Copy

It is a combination of the right line and the times symbol.

natural join

$\Join$

\Join
Copy

It is a symbol used to represent natural join. It can also be represented using the "\bowtie", named after its shape.

General Symbol

dollar sign

$\$$

\$
Copy

In MathJax, certain characters like "\$", "#", "%", and "&" have special meaning. To display these characters themselves, you can prefix them with a backslash "\".

ampersand

$\And$

\And
Copy

The ampersand symbol "&" has special meaning in MathJax, so if you want to display the ampersand symbol itself, you can use either "&" or "\And".

yen sign

$\yen$

\yen
Copy

The yen "\" symbol has special meaning in MathJax and is used for commands, so if you want to display the yen symbol, you need to use a specific notation.

check mark

$\checkmark$

\checkmark
Copy
diamond

$\diamondsuit$

\diamondsuit
Copy

It is the symbol used in playing card. Compared to a diamond shape, the edges are slightly concave inward.

heart

$\heartsuit$

\heartsuit
Copy

It is the symbol used in playing card.

club

$\clubsuit$

\clubsuit
Copy

It is the symbol used in playing card.

spade

$\spadesuit$

\spadesuit
Copy

It is the symbol used in playing card.

flat

$\flat$

\flat
Copy
natural

$\natural$

\natural
Copy
sharp

$\sharp$

\sharp
Copy
dagger

$\dagger$

\dagger
Copy
dagger 2

$\ddagger$

\ddagger
Copy

Text

Space

space

$aaa \ bbb$

aaa \ bbb
Copy

To represent a space, you can use a combination of "\ " and a space. Using just a space character alone may not display as intended.

wide space

$aaa \quad bbb$

aaa \quad bbb
Copy

To represent a wider space, you can either repeat the space multiple times or use the "\quad" command. The term "quad" is derived from "quadrat," which refers to a square frame. In applications like Word, a space is sometimes represented as a square shape, and imagining that can provide a clearer understanding of the command.

wide space 2

$aaa \qquad bbb$

aaa \qquad bbb
Copy

The more "q"s you add to "quad", the wider the space becomes.

specified space size

$aaa \hspace{ 10pt } bbb$

aaa \hspace{ 10pt } bbb
Copy

The command "\hspace" is used to create horizontal space. It allows you to specify the desired size of the space you want to create.

no space

$aaa \! bbb$

aaa \! bbb
Copy

By combining the commands "\" and "!", you can reduce the space between two elements.

new line

$\begin{eqnarray} aaa \\ bbb \end{eqnarray}$

\begin{eqnarray} 
aaa \\ bbb
\end{eqnarray}
Copy

By doubling the backslash "\" or using the command "\cr", you can create a line break or new line. The "cr" stands for "carriage return," which represents the control character that moves the cursor to the beginning of the line.

specified new line size

$\begin{eqnarray} aaa \\[5pt] bbb \end{eqnarray}$

\begin{eqnarray} 
aaa \\[5pt] bbb
\end{eqnarray}
Copy

After doubling the backslash "\" to indicate a line break, you can specify the width of the line break using additional commands.

specified new line size sample

$\begin{eqnarray} & & \frac{1}{2} +\frac{1}{3} +\frac{1}{6} \\[ 5pt ] &=& \frac{3}{6} +\frac{2}{6} +\frac{1}{6} \\ &=& 1 \end{eqnarray}$

\begin{eqnarray}
& & \frac{1}{2} +\frac{1}{3} +\frac{1}{6} \\[ 5pt ]
&=& \frac{3}{6} +\frac{2}{6} +\frac{1}{6} \\
&=& 1
\end{eqnarray}
Copy

Letter size

tiny

$\tiny{ abc ABC }$

\tiny{ abc ABC }
Copy
small size

$\scriptsize{ abc ABC }$

\scriptsize{ abc ABC }
Copy
small size 2

$\small{ abc ABC }$

\small{ abc ABC }
Copy
normal size

$\normalsize{ abc ABC }$

\normalsize{ abc ABC }
Copy
large size

$\large{ abc ABC }$

\large{ abc ABC }
Copy
large size 2

$\Large{ abc ABC }$

\Large{ abc ABC }
Copy
large size 3

$\LARGE{ abc ABC }$

\LARGE{ abc ABC }
Copy
huge size

$\huge{ abc ABC }$

\huge{ abc ABC }
Copy
huge size 2

$\Huge{ abc ABC }$

\Huge{ abc ABC }
Copy

Font

roman font

$\mathrm{ ABC }$

\mathrm{ ABC }
Copy

It is derived from the Roman typeface (RoMan).

type writer font

$\mathtt{ ABC }$

\mathtt{ ABC }
Copy

It is derived from typewriter typestyle.

sans serif

$\mathsf{ ABC }$

\mathsf{ ABC }
Copy

It is derived from sans serif.

calligraphy font

$\mathcal{ ABC }$

\mathcal{ ABC }
Copy

It is derived from calligraphy.

bold font

$\mathbf{ ABC }$

\mathbf{ ABC }
Copy

It is derived from bold font.

italic

$\mathit{ ABC }$

\mathit{ ABC }
Copy

It is derived from italic.

blackboard bold

$\mathbb{ ABC }$

\mathbb{ ABC }
Copy

It is derived from blackboard bold.

script letters

$\mathscr{ ABC }$

\mathscr{ ABC }
Copy

It is derived from script.

Fraktur

$\mathfrak{ ABC }$

\mathfrak{ ABC }
Copy

It is derived from Fraktur.

roman font sample

$\mathrm{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }$

\mathrm{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }
Copy
typewriter font sample

$\mathtt{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }$

\mathtt{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }
Copy
sans serif sample

$\mathsf{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }$

\mathsf{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }
Copy
calligraphy font sample

$\mathcal{ ABCDEFGHIJKLMNOPQRSTUVWXYZ }$

\mathcal{ ABCDEFGHIJKLMNOPQRSTUVWXYZ }
Copy
bold font sample

$\mathbf{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }$

\mathbf{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }
Copy
italic sample

$\mathit{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }$

\mathit{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }
Copy
blackboard bold sample

$\mathbb{ ABCDEFGHIJKLMNOPQRSTUVWXYZ }$

\mathbb{ ABCDEFGHIJKLMNOPQRSTUVWXYZ }
Copy
script letters sample

$\mathscr{ ABCDEFGHIJKLMNOPQRSTUVWXYZ }$

\mathscr{ ABCDEFGHIJKLMNOPQRSTUVWXYZ }
Copy
Fraktur sample

$\mathfrak{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }$

\mathfrak{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }
Copy

Superscript and Subscript

superscript

$a^{ xy }$

a^{ xy }
Copy
superscript left

${}^{ xy } a$

{}^{ xy } a
Copy
subscript

$a_{ xy }$

a_{ xy }
Copy
subscript left

${}_{ xy } a$

{}_{ xy } a
Copy
subscript sample

$\begin{eqnarray} a_n^2 + a_{ n + 1 }^2 = a_{ 2n + 1 } \end{eqnarray}$

\begin{eqnarray}
a_n^2 + a_{ n + 1 }^2 = a_{ 2n + 1 }
\end{eqnarray}
Copy

Accent

hat

$\hat{ a }$

\hat{ a }
Copy
grave

$\grave{ a }$

\grave{ a }
Copy
acute

$\acute{ a }$

\acute{ a }
Copy
dot

$\dot{ a }$

\dot{ a }
Copy
double dots

$\ddot{ a }$

\ddot{ a }
Copy
bar

$\bar{ a }$

\bar{ a }
Copy
arrow

$\vec{ a }$

\vec{ a }
Copy
check

$\check{ a }$

\check{ a }
Copy
tilde

$\tilde{ a }$

\tilde{ a }
Copy
breve

$\breve{ a }$

\breve{ a }
Copy
wide hat

$\widehat{ AAA }$

\widehat{ AAA }
Copy
wide tilde

$\widetilde{ AAA }$

\widetilde{ AAA }
Copy

Alphabet

upside down A

$\forall$

\forall
Copy

The symbol consists of an upside-down "A".

upside down E

$\exists$

\exists
Copy

The symbol consists of an upside-down "E".

upside down F

$\Finv$

\Finv
Copy

The symbol consists of an upside-down "F".

h bar

$\hbar$

\hbar
Copy

The symbol is a combination of the letter "h" and a bar. It is sometimes used to represent the reduced Planck constant, also known as the Dirac constant.

dotless i

$\imath$

\imath
Copy

"i" without a above dot.

dotless j

$\jmath$

\jmath
Copy

"j" without a above dot.

blackboard bold k

$\Bbbk$

\Bbbk
Copy

It is "k" in blackboard bold.

handwriting-style l

$\ell$

\ell
Copy

It is the cursive letter "l".

circled R

$\circledR$

\circledR
Copy

It is a symbol consisting of the letter "R" inside a circle.

circled S

$\circledS$

\circledS
Copy

It is a symbol consisting of the letter "S" inside a circle.

Greek alphabet

alpha

$\alpha$

\alpha
Copy
beta

$\beta$

\beta
Copy
gamma

$\gamma$

\gamma
Copy
delta

$\delta$

\delta
Copy
epsilon

$\epsilon$

\epsilon
Copy
epsilon-2

$\varepsilon$

\varepsilon
Copy
zeta

$\zeta$

\zeta
Copy
eta

$\eta$

\eta
Copy
theta

$\theta$

\theta
Copy
theta-2

$\vartheta$

\vartheta
Copy
iota

$\iota$

\iota
Copy
kappa

$\kappa$

\kappa
Copy
lambda

$\lambda$

\lambda
Copy
mu

$\mu$

\mu
Copy
nu

$\nu$

\nu
Copy
xi

$\xi$

\xi
Copy
o

$o$

o
Copy

It is the same as the alphabet.

pi

$\pi$

\pi
Copy
pi-2

$\varpi$

\varpi
Copy
rho

$\rho$

\rho
Copy
rho-2

$\varrho$

\varrho
Copy
sigma

$\sigma$

\sigma
Copy
sigma-2

$\varsigma$

\varsigma
Copy
tau

$\tau$

\tau
Copy
upsilon

$\upsilon$

\upsilon
Copy
phi

$\phi$

\phi
Copy
phi-2

$\varphi$

\varphi
Copy
chi

$\chi$

\chi
Copy
psi

$\psi$

\psi
Copy
omega

$\omega$

\omega
Copy
Alpha

$A$

A
Copy

It is the same as the alphabet.

Beta

$B$

B
Copy

It is the same as the alphabet.

Gamma

$\Gamma$

\Gamma
Copy
Gamma-2

$\varGamma$

\varGamma
Copy
Delta

$\Delta$

\Delta
Copy
Delta-2

$\varDelta$

\varDelta
Copy
Epsilon

$E$

E
Copy

It is the same as the alphabet.

Zeta

$Z$

Z
Copy

It is the same as the alphabet.

Eta

$H$

H
Copy

It is the same as the alphabet.

Theta

$\Theta$

\Theta
Copy
Theta-2

$\varTheta$

\varTheta
Copy
Iota

$I$

I
Copy

It is the same as the alphabet.

Kappa

$K$

K
Copy

It is the same as the alphabet.

Lambda

$\Lambda$

\Lambda
Copy
Lambda-2

$\varLambda$

\varLambda
Copy
Mu

$M$

M
Copy

It is the same as the alphabet.

Nu

$N$

N
Copy

It is the same as the alphabet.

Xi

$\Xi$

\Xi
Copy
Xi-2

$\varXi$

\varXi
Copy
O

$O$

O
Copy

It is the same as the alphabet.

Pi

$\Pi$

\Pi
Copy
Pi-2

$\varPi$

\varPi
Copy
Rho

$P$

P
Copy

It is the same as the alphabet.

Sigma

$\Sigma$

\Sigma
Copy
Sigma-2

$\varSigma$

\varSigma
Copy
Tau

$T$

T
Copy

It is the same as the alphabet.

Upsilon

$\Upsilon$

\Upsilon
Copy
Upsilon-2

$\varUpsilon$

\varUpsilon
Copy
Phi

$\Phi$

\Phi
Copy
Phi-2

$\varPhi$

\varPhi
Copy
Chi

$X$

X
Copy

It is the same as the alphabet.

Psi

$\Psi$

\Psi
Copy
Psi-2

$\varPsi$

\varPsi
Copy
Omega

$\Omega$

\Omega
Copy
Omega-2

$\varOmega$

\varOmega
Copy

HTML

color text

$\color{red}{a \times b}$

\color{red}{a \times b}
Copy

By using the "\color" command and specifying a color name, you can change the color of mathematical symbols within an equation.

color text 2

$\color{ #ff0000 }{a \times b}$

\color{ #ff0000 }{a \times b}
Copy

With the "\color" command, you can also specify colors using hexadecimal color codes.

color box

$\colorbox{red}{ Important! }$

\colorbox{red}{ Important! }
Copy

By using the "\colorbox" command, you can specify the background color for a block of text.

color box 2

$\colorbox{red}{$a \times b$}$

\colorbox{red}{$a \times b$}
Copy

To include mathematical expressions within the "\colorbox" command, you can enclose the mathematical expression in $ symbols to switch to math mode.

color border box

$\fcolorbox{black}{ #00ff00 }{$a \times b$}$

\fcolorbox{black}{ #00ff00 }{$a \times b$}
Copy

\fcolorbox is a combination of the frame and colorbox. It allows for specifying the frame color, background color, and text content in that order. To write mathematical expressions, you can use the $ to switch to math mode.

color border box 2

$\bbox[yellow, 5pt, border: 2px dotted red]{abc}$

\bbox[yellow, 5pt, border: 2px dotted red]{abc}
Copy

The "\bbox" command is for the bounding box. It allows for more detailed customization in blackets, such as background color, margin, and style. The curly brackets is for the equation. The "\bbox" is not a standard command in $\TeX$.

unicode

$\unicode{x0041}$

\unicode{x0041}
Copy

By using the "\unicode" command followed by the Unicode character code, you can display a particular character in your text.

unicode sample

$\begin{eqnarray} \unicode{x5F45}\text{は、弓へんに剪。} \end{eqnarray}$

\begin{eqnarray}
\unicode{x5F45}\text{は、弓へんに剪。}
\end{eqnarray}
Copy

It's a sample using the "\unicode"

Special character

section

$\S$

\S
Copy
aleph

$\aleph$

\aleph
Copy

The Hebrew letter "Aleph".

beth

$\beth$

\beth
Copy

The Hebrew letter "Bet".

gimel

$\gimel$

\gimel
Copy

The Hebrew letter "Gimel".

daleth

$\daleth$

\daleth
Copy

The Hebrew letter "Dalet".

TeX

$\TeX$

\TeX
Copy

It represents the logo of TeX.

LaTex

$\LaTeX$

\LaTeX
Copy

It represents the logo of LaTeX.