Formula
Number
$\frac{1}{2}$
\frac{1}{2}
\frac comes from "fraction". The first wave brackets is for the numerator and the second is for the denominator.
$\displaystyle \frac{1}{2}$
\displaystyle \frac{1}{2}
If you add "\displaystyle", it will be displayed larger.
$\dfrac{1}{2}$
\dfrac{1}{2}
\dfrac means \frac in \displaystyle.
$\require{physics} \flatfrac{1}{2}$
\require{physics} \flatfrac{1}{2}
\flatfrac in the physics extension allows you to write fractions on a line. You can also use the sign / to write "1/2".
$\left( -\frac{1}{2} \right)^2$
\left( -\frac{1}{2} \right)^2
To keep the fractions in parentheses, prefix the brackets with \left and \right.
$\require{physics} \qty( -\frac{1}{2} )^2$
\require{physics} \qty( -\frac{1}{2} )^2
\qty in the physics extension allows you to write parenthesized fractions a little simpler. \qty comes from physical quantity.
$\frac{a+b}{c+\frac{d}{e}}$
\frac{a+b}{c+\frac{d}{e}}
Fractions can be nested.
$\cfrac{a+b}{c+\cfrac{d}{e}}$
\cfrac{a+b}{c+\cfrac{d}{e}}
With \cfrac, the size of the fraction will be the same. \cfrac comes from continued fraction. Using \dfrac would produce a similar display.
$\begin{eqnarray} 1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\ddots}}} = \frac{1}{2} \left( 1+\sqrt{5} \right) \end{eqnarray}$
\begin{eqnarray} 1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\ddots}}} = \frac{1}{2} \left( 1+\sqrt{5} \right) \end{eqnarray}
The diagonal dots indicate that it goes on forever.
$0.123$
0.123
A period is used for the decimal point.
$\frac{1}{11} = 0.\dot{0}\dot{9}$
\frac{1}{11} = 0.\dot{0}\dot{9}
To add dot on top of a number, use \dot.
$\pi = 3.14 \ldots$
\pi = 3.14 \ldots
Here's a sample to add three points to the bottom.
$\sqrt{2} = 1.4142 \cdots$
\sqrt{2} = 1.4142 \cdots
Here's a sample to add three points in the middle.
$\infty$
\infty
\infty comes from "infinity".
$|x|$
|x|
Absolute values can be represented by a vertical line symbol.
$\vert x \vert$
\vert x \vert
A vertical line used for absolute values can also be represented by vert, which comes from vertical line.
$\left| \dfrac{x}{2} \right|$
\left| \dfrac{x}{2} \right|
If you add \left and \right before the vertical lines, the vertical lines will be longer to match the size of the fraction.
$\require{physics} \qty|\dfrac{x}{2}|$
\require{physics} \qty|\dfrac{x}{2}|
\qty in the physics extension allows you to write fractions with absolute value symbols a little simpler. \qty comes from physical quantity.
$\require{physics} \abs{ \dfrac{x}{2} }$
\require{physics} \abs{ \dfrac{x}{2} }
\abs in the physics extension allows you to write fractions with absolute value symbols. \abs comes from "absolute value".
$[x]$
[x]
The Gauss brackets can be represented by a square bracket symbol.
$\lbrack x \rbrack$
\lbrack x \rbrack
The Gauss brackets can also be represented with \lbrack and \rblack. They come from the left bracket and the right bracket.
$\lfloor x \rfloor$
\lfloor x \rfloor
They come from "floor function".
$\lceil x \rceil$
\lceil x \rceil
They come from "ceiling function".
$\begin{eqnarray} [x] = \lfloor x \rfloor = \max\{ n\in\mathbb{Z} \mid n \leqq x \} \end{eqnarray}$
\begin{eqnarray} [x] = \lfloor x \rfloor = \max\{ n\in\mathbb{Z} \mid n \leqq x \} \end{eqnarray}
The definition of the Gaussian brackets.
Arithmetic Operation
$1 + 2$
1 + 2
We use the symbols as it is.
$3 - 1$
3 - 1
We use the symbols as it is.
$2 \times 3$
2 \times 3
It comes from reading "2 x 3" as "2 times 3".
$6 \divisionsymbol 3$
6 \div 3
\div comes from "divide". If you are using the physics extension, the div will be overwritten. So you must duplicate it before it is overwritten.
$\pm 1$
\pm 1
\pm comes from "plus and minus".
$\mp 1$
\mp 1
\mp comes from "minus and plus".
$a \cdot b = ab$
a \cdot b = ab
\cdot comes from "center dot".
$a \divisionsymbol b = \frac{a}{b}$
a \div b = \frac{a}{b}
This is the relationship between division and fractions.
$\begin{array}{r} 67 \\[-3pt] \underline{\times\phantom{0}63}\\[-3pt] 201 \\[-3pt] \underline{\phantom{0}402\phantom{0}} \\[-3pt] 4221 \end{array}$
\begin{array}{r} 67 \\[-3pt] \underline{\times\phantom{0}63}\\[-3pt] 201 \\[-3pt] \underline{\phantom{0}402\phantom{0}} \\[-3pt] 4221 \end{array}
The array environment is used to specify right-justification. If you use underline, a line will be drawn underneath the text. The phantom allocates a space for the characters you specify. -3pt is a way of writing to reduce the width of a line break a little.
$\begin{array}{r} 7.6 \\[-3pt] 25\enclose{longdiv}{190\phantom{0}} \\[-3pt] \underline{175\phantom{.0}} \\[-3pt] 15\phantom{.}0 \\[-3pt] \underline{15\phantom{.}0} \\[-3pt] \phantom{000}0 \end{array}$
\begin{array}{r} 7.6 \\[-3pt] 25\enclose{longdiv}{190\phantom{0}} \\[-3pt] \underline{175\phantom{.0}} \\[-3pt] 15\phantom{.}0 \\[-3pt] \underline{15\phantom{.}0} \\[-3pt] \phantom{000}0 \end{array}
You can use \enclose{longdiv} to represent the long division. The phantom is used to substitute whitespace for the specified characters and align them.
$a \equiv b \mod n$
a \equiv b \mod n
\mod and \equiv come from modular arithmetic and equivalence. Three lines are for describe equivalence.
$a \equiv b \pmod n$
a \equiv b \pmod n
\pmod means "mod with parentheses".
$\gcd(a, b) = \gcd(b, a \bmod b)$
\gcd(a, b) = \gcd(b, a \bmod b)
\bmod means "mod used like a binary operator".
$x \propto y$
x \propto y
\propto comes from "proportional to".
Greater or Less
$a \gt b$
a \gt b
In MathJax, we use \gt because > has a special meaning on the web. It comes from "greater than".
$a \geq b$
a \geq b
\geq is a combination of "greater than" and "equal".
$a \geqq b$
a \geqq b
If you use \geqq, you will have one more horizontal line than with \geq.
$a \lt b$
a \lt b
In MathJax, we use \lt because < has a special meaning on the web. It comes from "less than".
$a \leq b$
a \leq b
\leq is a combination of "less than" and "equal".
$a \leqq b$
a \leqq b
If you use \leqq, you will have one more horizontal line than with \leq.
$a = b$
a = b
We use the symbols as it is.
$a \neq b$
a \neq b
\neq comes from "not equal". It can also be written as \ne or \not=.
$a \fallingdotseq b$
a \fallingdotseq b
\fallingdotseq is a combination of "falling dots" and "equal".
$a \sim b$
a \sim b
\sim comes from "similar".
$a \simeq b$
a \simeq b
It is a combination of "similar" and "equal". If you write \eqsim, the symbols above and below will be swapped
$a \approx b$
a \approx b
\approx comes from "approximately".
$a \gg b$
a \gg b
If you write "\gg", two > overlap.. If you write "\ggg", three > overlap.
$a \ll b$
a \ll b
If you write "\ll", two < overlap.. If you write "\lll", three < overlap.
$\max f(x)$
\max f(x)
$\min f(x)$
\min f(x)
$\begin{eqnarray} \max ( a, b ) = \begin{cases} a & ( a \geqq b ) \\ b & ( a \lt b ) \end{cases} \end{eqnarray}$
\begin{eqnarray} \max ( a, b ) = \begin{cases} a & ( a \geqq b ) \\ b & ( a \lt b ) \end{cases} \end{eqnarray}
The eqnarray environment is used to display multiple expressions. The cases environment is used to write cases.
Multiple Line Equations
$\begin{eqnarray} aaa \\ bbb \end{eqnarray}$
\begin{eqnarray} aaa \\ bbb \end{eqnarray}
To display a multi-line expression, we use the eqnarray environment. A line break is not reflected in the expression. To start a new line, we put "\\".
$\begin{eqnarray} aaa \\[5pt] bbb \end{eqnarray}$
\begin{eqnarray} aaa \\[5pt] bbb \end{eqnarray}
You can change the size of a line break by using square brackets after "\\", e.g. \\[5pt].
$\begin{eqnarray} x + 2x &=& 3 \\ x &=& 1 \end{eqnarray}$
\begin{eqnarray} x + 2x &=& 3 \\ x &=& 1 \end{eqnarray}
You can use "&" to align the position.
$\begin{eqnarray} \left\{ \begin{array}{l} x + y = 10 \\ 2x + 4y = 32 \end{array} \right. \end{eqnarray}$
\begin{eqnarray} \left\{ \begin{array}{l} x + y = 10 \\ 2x + 4y = 32 \end{array} \right. \end{eqnarray}
You can use "\left\{" and "\right." to represent the big curly bracket on the left side of the simultaneous equations.
$\begin{eqnarray} |x| = \begin{cases} x & ( x \geqq 0 ) \\ -x & ( x \lt 0 ) \end{cases} \end{eqnarray}$
\begin{eqnarray} |x| = \begin{cases} x & ( x \geqq 0 ) \\ -x & ( x \lt 0 ) \end{cases} \end{eqnarray}
The cases environment can be used to display for piecewise-defined functions.
Set
$x \in A$
x \in A
\in comes from "x is in A".
$A \ni x$
A \ni x
Reversing \in to \ni changes the direction of the symbol.
$x \notin A$
x \notin A
\notin comes from "x is not in A".
$A \subset B$
A \subset B
It shows A is a subset of B.
$A \subseteq B$
A \subseteq B
\subseteq means "subset or equal".
$A \subseteqq B$
A \subseteqq B
If you repeat q, the two lines are shown on the bottom.
$A \supset B$
A \supset B
This shows A is a superset of B.
$A \supseteq B$
A \supseteq B
\supseteq means "superset or equal".
$A \supseteqq B$
A \supseteqq B
If you repeat q, the two lines are shown on the bottom.
$A \not \subset B$
A \not \subset B
If you combine \not and \subset, the slashed line will be added.
$A \subsetneqq B$
A \subsetneqq B
This shows A is a proper subset of B. If you use \supsetneqq, that shows A is a proper superset of B.
$A \cap B$
A \cap B
$A \cup B$
A \cup B
$\varnothing$
\varnothing
The symbol is for an empty set, which comes from "nothing". It is similar to but different from the Greek letter phi.
$\emptyset$
\emptyset
The symbol is for an empty set, which comes from "empty set". It is similar to but different from the Greek letter phi.
$A^c$
A^c
"c" comes from "complement set".
$\overline{ A }$
\overline{ A }
You can also draw a line over the set to represent the complementary set.
$\overline{ (A\cap B) } = \overline{ A } \cup \overline{ B }$
\overline{ (A\cap B) } = \overline{ A } \cup \overline{ B }
This is De Morgan's Law.
$\begin{eqnarray} \left( \bigcup_{\lambda\in\Lambda}A_{\lambda} \right)^c =\bigcap_{\lambda\in\Lambda}A_{\lambda}^c \end{eqnarray}$
\begin{eqnarray} \left( \bigcup_{\lambda\in\Lambda}A_{\lambda} \right)^c =\bigcap_{\lambda\in\Lambda}A_{\lambda}^c \end{eqnarray}
This is De Morgan's Law too.
$A \setminus B$
A \setminus B
\setminus means a difference set. It is similar to backslash, but differs that \setminus contains a space before and after it.
$A \setminus B = A \cap B^c = \{ x \in A \mid x \notin B \}$
A \setminus B = A \cap B^c = \{ x \in A \mid x \notin B \}
This is the definition of a difference set.
$A \triangle B$
A \triangle B
The symmetric difference is represented by a triangle.
$A \triangle B = (A \setminus B) \cup (B \setminus A)$
A \triangle B = (A \setminus B) \cup (B \setminus A)
This is the definition of the symmetric difference.
$\mathbb{ N }$
\mathbb{ N }
This is the blackboard bold.
$\mathbb{ Z }$
\mathbb{ Z }
$\mathbb{ Q }$
\mathbb{ Q }
$\mathbb{ R }$
\mathbb{ R }
$\mathbb{ C }$
\mathbb{ C }
$\mathbb{ H }$
\mathbb{ H }
$\sup A$
\sup A
$\inf A$
\inf A
$\aleph$
\aleph
It is used to express the cardinality of an infinite set.
Logic Notation
$P \implies Q$
P \implies Q
$P \Rightarrow Q$
P \Rightarrow Q
The right arrow is sometimes used to indicate "implication".
$P \to Q$
P \to Q
The single line arrow may be used to indicate "implication".
$P \Leftarrow Q$
P \Leftarrow Q
$P \gets Q$
P \gets Q
A single arrow to the left.
$P \iff Q$
P \iff Q
\iff means "if and only if".
$P \Leftrightarrow Q$
P \Leftrightarrow Q
The left right double arrow may be used to indicate "equivalence".
$P \leftrightarrow Q$
P \leftrightarrow Q
The left right arrow may be used to indicate "equivalence".
$P \equiv Q$
P \equiv Q
\equiv comes from "equivalence".
$\therefore$
\therefore
$\because$
\because
$\forall x$
\forall x
This is Turned A.
$\exists x$
\exists x
This is Turned E.
$\nexists$
\nexists
\nexists come from "not" and "exists".
$\begin{eqnarray} & & {}^\forall \varepsilon \gt 0, {}^\exists \delta \gt 0 \mbox{ s.t. } \\ & & {}^\forall x \in \mathbb{ R }, 0 \lt |x - a| \lt \delta \implies |f(x) - b| \lt \varepsilon \end{eqnarray}$
\begin{eqnarray} & & {}^\forall \varepsilon \gt 0, {}^\exists \delta \gt 0 \mbox{ s.t. } \\ & & {}^\forall x \in \mathbb{ R }, 0 \lt |x - a| \lt \delta \implies |f(x) - b| \lt \varepsilon \end{eqnarray}
This is the (ε, δ)-definition of limit.
$P \land Q$
P \land Q
\land comes from "And in logic".
$P \lor Q$
P \lor Q
\lor comes from "Or in logic".
$\lnot P$
\lnot P
\lnot comes from "Not in logic".
$\overline{ P }$
\overline{ P }
Another way to show negation is to draw a line over the letter.
$!P$
!P
You can also write an "!" in front of the letter to indicate negation.
$P \oplus Q$
P \oplus Q
A + ("plus") sign in a circle ("O") indicates an exclusive disjunction.
$P \veebar Q$
P \veebar Q
This symbol is a combination of the letters V ("vee") and horizontal line ("bar"), and is sometimes used to represent an exclusive disjunction.
$P \oplus Q = (P \land \lnot Q) \lor (\lnot P \land Q)$
P \oplus Q = (P \land \lnot Q) \lor (\lnot P \land Q)
This is a formula relating exclusive disjunction to logical disjunction, logical product, and negation.
$\top$
\top
This is used to show tautology. There's a horizontal line on top.
$\bot$
\bot
This is used to show contradiction. There's a horizontal line on bottom.
$P \vdash Q$
P \vdash Q
\vdash comes from "vertical line" and "dash".
$P \models Q$
P \models Q
The same notation applies when using \vDash instead of \models.
Permutation and Combination
${}_n \mathrm{ P }_k$
{}_n \mathrm{ P }_k
To write a small letter in the lower left corner, use "{}_". "P" is Roman type.
${}_n \mathrm{ C }_k$
{}_n \mathrm{ C }_k
$n!$
n!
$\binom{ n }{ k }$
\binom{ n }{ k }
\binom comes from "binomial coefficient".係数)に由来しています。
${ n \choose k }$
{ n \choose k }
\choose is used to choose k from n. The braces are necessary to separate it from the preceding and following characters.
$\dbinom{ n }{ k }$
\dbinom{ n }{ k }
This is \binom in displaystyle.
${}_n \mathrm{ H }_k$
{}_n \mathrm{ H }_k
$\begin{eqnarray} {}_n \mathrm{ C }_k = \binom{ n }{ k } = \frac{ n! }{ k! ( n - k )! } \end{eqnarray}$
\begin{eqnarray} {}_n \mathrm{ C }_k = \binom{ n }{ k } = \frac{ n! }{ k! ( n - k )! } \end{eqnarray}
$\begin{eqnarray} {}_n \mathrm{ P }_k = n \cdot ( n - 1 ) \cdots ( n - k + 1 ) = \frac{ n! }{ ( n - k )! } \end{eqnarray}$
\begin{eqnarray} {}_n \mathrm{ P }_k = n \cdot ( n - 1 ) \cdots ( n - k + 1 ) = \frac{ n! }{ ( n - k )! } \end{eqnarray}
Summation and Product
$\sum_{i=1}^{n} a_n$
\sum_{i=1}^{n} a_n
\sum comes from sum. To write expressions below and above the sigma, use "_" and "^".
$\displaystyle \sum_{i=1}^n a_n$
\displaystyle \sum_{i=1}^n a_n
If you use displaystyle, the sigma will be larger. The formula will be placed above and below the sigma.
$\begin{eqnarray} \sum_{ k = 1 }^{ n } k^2 = \overbrace{ 1^2 + 2^2 + \cdots + n^2 }^{ n } = \frac{ 1 }{ 6 } n ( n + 1 ) ( 2n + 1 ) \end{eqnarray}$
\begin{eqnarray} \sum_{ k = 1 }^{ n } k^2 = \overbrace{ 1^2 + 2^2 + \cdots + n^2 }^{ n } = \frac{ 1 }{ 6 } n ( n + 1 ) ( 2n + 1 ) \end{eqnarray}
Using overbrace, you can display a brace on the top of the formula, and if you set the superscript, you can write text on top of the brace.
$\prod_{ i = 0 }^n x_i$
\prod_{ i = 0 }^n x_i
\prod comes from product.
$\displaystyle \prod_{i=0}^n x_i$
\displaystyle \prod_{i=0}^n x_i
$\begin{eqnarray} n! = \prod_{ k = 1 }^n k \end{eqnarray}$
\begin{eqnarray} n! = \prod_{ k = 1 }^n k \end{eqnarray}
This is a sample using factorial.
$\begin{eqnarray} \zeta (s) = \prod_{ p:\mathrm{ prime } } \frac{ 1 }{ 1-p^{-s} } \end{eqnarray}$
\begin{eqnarray} \zeta (s) = \prod_{ p:\mathrm{ prime } } \frac{ 1 }{ 1-p^{-s} } \end{eqnarray}
This is a sample using the Riemann zeta function.
Exponent and Logarithm
$2^3$
2^3
To write a number in the upper right corner, use "^".
$e^{ i \pi }$
e^{ i \pi }
If you want to write multiple numbers or letters in the upper right corner, put them in braces.
$\exp ( x )$
\exp ( x )
$\sqrt{ 2 }$
\sqrt{ 2 }
\sqrt comes from "square root".
$\sqrt{ \mathstrut a } + \sqrt{ \mathstrut b }$
\sqrt{ \mathstrut a } + \sqrt{ \mathstrut b }
Using \mathstrut, you can align the height of the square root.
$\sqrt[ n ]{ x }$
\sqrt[ n ]{ x }
When writing power roots, use brackets.
$\log x$
\log x
$\log_{ 2 } x$
\log_{ 2 } x
The logarithm base is specified using the "_".
$\ln x$
\ln x
Shape
$90^{ \circ }$
90^{ \circ }
The small circle in the upper right corner representing degrees can be represented using \circ, which comes from "circle".
$\frac{ \pi }{ 2 }$
\frac{ \pi }{ 2 }
$\angle A$
\angle A
$AB /\!/ CD$
AB /\!/ CD
In Japan, two "/" signs are used to indicate parallelism. "\!" can be used to close the gap.
$AB \parallel CD$
AB \parallel CD
$AB \perp CD$
AB \perp CD
\perp comes from "perpendicular".
$\triangle ABC$
\triangle ABC
$\Box ABCD$
\Box ABCD
You can use \Box to represent a rectangle. It starts with a capital letter.
$\stackrel{\huge\frown}{AB}$
\stackrel{\huge\frown}{AB}
For arcs, since there is no proper command, we combine symbols. \forwn represents the arc symbol (looks like a frown mouth), and \huge makes it bigger. You can use \stackrel to stack the symbols on top of each other.
$\overparen{AB}$
\overparen{AB}
\overparen comes from "over" and "parentheses". It allows you to put round brackets over text. However, it don't display beautifully.
$\triangle ABC \equiv \triangle DEF$
\triangle ABC \equiv \triangle DEF
\equiv comes from "equivalent". In Japan, it is often written like this.
$\triangle ABC \cong \triangle DEF$
\triangle ABC \cong \triangle DEF
\cong comes from "congruent". This is the most common way to write globally.
$\triangle ABC \backsim \triangle DEF$
\triangle ABC \backsim \triangle DEF
The commonly used similarity symbol in Japan is obtained by rotating the letter S by 90 degrees. An equivalent symbol for this is "backsim." However, this symbol may feel a bit unfamiliar as it is a reversed tilde.
$\triangle ABC \sim \triangle DEF$
\triangle ABC \sim \triangle DEF
It is derived from the concept of similarity. It is more commonly used overseas to represent similarity.
Trigonometric Function
$\sin x$
\sin x
$\cos x$
\cos x
$\tan x$
\tan x
$\begin{eqnarray} \sin 45^\circ = \frac{ \sqrt{2} }{ 2 } \end{eqnarray}$
\begin{eqnarray} \sin 45^\circ = \frac{ \sqrt{2} }{ 2 } \end{eqnarray}
$\begin{eqnarray} \cos \frac{ \pi }{ 3 } = \frac{ 1 }{ 2 } \end{eqnarray}$
\begin{eqnarray} \cos \frac{ \pi }{ 3 } = \frac{ 1 }{ 2 } \end{eqnarray}
$\begin{eqnarray} \tan \theta = \frac{ \sin \theta }{ \cos \theta } \end{eqnarray}$
\begin{eqnarray} \tan \theta = \frac{ \sin \theta }{ \cos \theta } \end{eqnarray}
$\sec x$
\sec x
$\csc x$
\csc x
$\cot x$
\cot x
$\arcsin x$
\arcsin x
$\arccos x$
\arccos x
$\arctan x$
\arctan x
$\sinh x$
\sinh x
Hyperbolic functions are not trigonometric functions, but I will introduce them here.
$\cosh x$
\cosh x
$\tanh x$
\tanh x
$\coth x$
\coth x
Complex Number
$a+bi$
a+bi
The imaginary unit is commonly denoted by "i."
$\oldRe x$
\Re x
It is derived from the term "real part."
$\require{physics} \Re x$
\require{physics} \Re x
When using the "physics" extension, the text is represented in Roman font.
$\oldIm x$
\Im x
It is derived from the term "imaginary part."
$\require{physics} \Im x$
\require{physics} \Im x
When using the "physics" extension, the text is represented in Roman font.
$\bar{z}$
\bar{z}
A line placed above a complex number represents its complex conjugate.
$\arg (z)$
\arg (z)
It is derived from the concept of the argument.
$\omega$
\omega
The Greek letter "omega" is sometimes used to represent the cube root of 1.
$\begin{eqnarray} z\bar{z} = |z|^2 \end{eqnarray}$
\begin{eqnarray} z\bar{z} = |z|^2 \end{eqnarray}
Limit
$\lim_{ x \to +0 } \frac{1}{x} = \infty$
\lim_{ x \to +0 } \frac{1}{x} = \infty
It is derived from the concept of a limit.
$\displaystyle \lim_{ n \to \infty } f_n(x) = f(x)$
\displaystyle \lim_{ n \to \infty } f_n(x) = f(x)
Adding "\displaystyle" causes the expression to be displayed in a larger format. Subscripts will be positioned below the "lim" symbol.
$\limsup_{ n \to \infty } a_n$
\limsup_{ n \to \infty } a_n
It is derived from the limit superior.
$\varlimsup_{ n \to \infty } a_n$
\varlimsup_{ n \to \infty } a_n
$\liminf_{ n \to \infty } a_n$
\liminf_{ n \to \infty } a_n
It is derived from the limit inferior.
$\varliminf_{ n \to \infty } a_n$
\varliminf_{ n \to \infty } a_n
$\begin{eqnarray} \varlimsup_{ n \to \infty } a_n = \lim_{ n \to \infty } \sup_{ k \geqq n } a_k \end{eqnarray}$
\begin{eqnarray} \varlimsup_{ n \to \infty } a_n = \lim_{ n \to \infty } \sup_{ k \geqq n } a_k \end{eqnarray}
This is an example of the limit superior of a sequence.
$\begin{eqnarray} \varliminf_{ n \to \infty } A_n = \bigcup_{ n = 1 }^{ \infty } \bigcap_{ k = n }^{ \infty } A_k = \bigcup_{ n \in \mathbb{ N } } \bigcap_{ k \geqq n } A_k \end{eqnarray}$
\begin{eqnarray} \varliminf_{ n \to \infty } A_n = \bigcup_{ n = 1 }^{ \infty } \bigcap_{ k = n }^{ \infty } A_k = \bigcup_{ n \in \mathbb{ N } } \bigcap_{ k \geqq n } A_k \end{eqnarray}
Here is an example of the limit inferior of a set.
$\mathcal{O}$
\mathcal{O}
In some cases, the symbol for Landau notation is represented using the letter "O" in calligraphy fonts.
Differentiation
$\frac{ dy }{ dx }$
\frac{ dy }{ dx }
This represents the derivative of y with respect to x expressed in fractional form.
$\frac{ \mathrm{ d } y }{ \mathrm{ d } x }$
\frac{ \mathrm{ d } y }{ \mathrm{ d } x }
This is the Roman font representation of "d" used in the previous example.
$\require{physics} \dv{y}{x}$
\require{physics} \dv{y}{x}
By using the "physics" extension, we can simplify the notation of "d" in Roman font. The "dv" is derived from "derivative." When we write it with a single curly bracket, only the denominator part remains.
$\frac{ d^n y }{ dx^n }$
\frac{ d^n y }{ dx^n }
This represents the expression of the nth derivative of y with respect to x in fractional form.
$\require{physics} \dv[n]{f}{x}$
\require{physics} \dv[n]{f}{x}
By using the "physics" extension, we can simplify the notation for the nth derivative.
$\left. \frac{dy}{dx} \right|_{x=a}$
\left. \frac{dy}{dx} \right|_{x=a}
A long vertical line drawn on the right side represents the evaluation of the expression at x=a. It is indicated using a subscript notation.
$\require{physics} \eval{\dv{y}{x}}_{x=a}$
\require{physics} \eval{\dv{y}{x}}_{x=a}
By using the "physics" extension, we can simplify the expression for the value of the derivative at x=a.
$f'$
f'
With the use of the apostrophe symbol (') in notation, we can represent the derivative.
$f^{\prime\prime}$
f^{\prime\prime}
If using two consecutive apostrophe symbols ('') does not display correctly, the notation "\prime" can be used instead to represent the derivative.
$f^{ ( n ) }$
f^{ ( n ) }
$Df$
Df
$D_x f$
D_x f
$D^n f$
D^n f
$\dot{y} = \frac{dy}{dt}$
\dot{y} = \frac{dy}{dt}
There is also a method of representing differentiation by placing a dot above a character.
$\ddddot{ y } = \frac{ d^4 y }{ dt^4 }$
\ddddot{ y } = \frac{ d^4 y }{ dt^4 }
Increasing "d" increases the number of dots.
$\begin{eqnarray} f'(x) = \frac{ df }{ dx } = \lim_{ \Delta x \to 0 } \frac{ f(x + \Delta x) - f(x) }{ \Delta x } \end{eqnarray}$
\begin{eqnarray} f'(x) = \frac{ df }{ dx } = \lim_{ \Delta x \to 0 } \frac{ f(x + \Delta x) - f(x) }{ \Delta x } \end{eqnarray}
$\frac{ \partial f }{ \partial x }$
\frac{ \partial f }{ \partial x }
It is derived from the partial derivative.
$\frac{ \partial }{ \partial y } \frac{ \partial }{ \partial x } z$
\frac{ \partial }{ \partial y } \frac{ \partial }{ \partial x } z
$\frac{ \partial^n f}{ \partial x^n }$
\frac{ \partial^n f}{ \partial x^n }
$\require{physics} \pdv{f}{x}$
\require{physics} \pdv{f}{x}
By using the "physics" extension, we can simplify the notation for expressing partial derivatives.
$\require{physics} \pdv{f}{x}{y}$
\require{physics} \pdv{f}{x}{y}
By utilizing the "physics" extension, we can simplify the notation for representing second-order partial derivatives.
$\require{physics} \pdv[n]{f}{x}$
\require{physics} \pdv[n]{f}{x}
By using the "physics" extension, we can simplify the notation for representing nth-order partial derivatives. Simply write "n" inside brackets to denote the order of the partial derivative.
$f_x$
f_x
$f_{ xy }$
f_{ xy }
$\nabla f$
\nabla f
$\Delta f$
\Delta f
$\begin{eqnarray} \Delta \varphi = \nabla^2 \varphi = \frac{ \partial^2 \varphi }{ \partial x^2 } + \frac{ \partial^2 \varphi }{ \partial y^2 } + \frac{ \partial^2 \varphi }{ \partial z^2 } \end{eqnarray}$
\begin{eqnarray} \Delta \varphi = \nabla^2 \varphi = \frac{ \partial^2 \varphi }{ \partial x^2 } + \frac{ \partial^2 \varphi }{ \partial y^2 } + \frac{ \partial^2 \varphi }{ \partial z^2 } \end{eqnarray}
$\begin{array}{c|ccccc} x & \cdots & -1 & \cdots & 1 & \cdots \\ \hline f’(x) & + & 0 & – & 0 & + \\ \hline f(x) & \nearrow & e & \searrow & -e & \nearrow \end{array}$
\begin{array}{c|ccccc} x & \cdots & -1 & \cdots & 1 & \cdots \\ \hline f’(x) & + & 0 & – & 0 & + \\ \hline f(x) & \nearrow & e & \searrow & -e & \nearrow \end{array}
Integral
$\int_0^1 f(x) dx$
\int_0^1 f(x) dx
The symbol "\int" is derived from the concept of integration. The limits of integration are represented using a subscript and a superscript.
$\displaystyle \int_{-\infty}^{ \infty } f(x) dx$
\displaystyle \int_{-\infty}^{ \infty } f(x) dx
Adding "\displaystyle" causes the expression to be displayed in a larger format. When including multiple symbols within the integral section, they are enclosed in curly brackets.
$\begin{eqnarray} \int_0^1 x dx = \left[ \frac{x^2}{2} \right]_0^1 = \frac{1}{2} \end{eqnarray}$
\begin{eqnarray} \int_0^1 x dx = \left[ \frac{x^2}{2} \right]_0^1 = \frac{1}{2} \end{eqnarray}
Here is an example of a integral calculation:
$\iint_D f(x,y) dxdy$
\iint_D f(x,y) dxdy
By stacking the symbol "i" (integral) multiple times, such as "\iint" for double integral, "\iiint" for triple integral, and "\iiiint" for quadruple integral, we represent iterated integrals.
$\idotsint_D f(x_1, x_2, \ldots , x_n) dx_1 \cdots dx_n$
\idotsint_D f(x_1, x_2, \ldots , x_n) dx_1 \cdots dx_n
By combining "int", "dots", and "int" together, we get the symbol "idotsint."
$\oint_C f(z) dz$
\oint_C f(z) dz
The symbol "oint" represents a contour integral, where the "o" attached to the "int".
Vector
$\vec{ a }$
\vec{ a }
The symbol "vector" is derived from the vectors.
$\overrightarrow{ AB }$
\overrightarrow{ AB }
To place an arrow above multiple characters, the notation "overrightarrow" is used (over + right + arrow).
$\boldsymbol{ A }$
\boldsymbol{ A }
Bold symbols, denoted using "boldsymbol," are sometimes used to represent vectors.
$( a_1, a_2, \ldots, a_n )$
( a_1, a_2, \ldots, a_n )
$\left( \begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_n \end{array} \right)$
\left( \begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_n \end{array} \right)
$\begin{eqnarray} \boldsymbol{ 1 } =( \underbrace{ 1, 1, \ldots, 1 }_{ n } )^{ \mathrm{ T } } =\left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \end{array} \right) \end{eqnarray}$
\begin{eqnarray} \boldsymbol{ 1 } =( \underbrace{ 1, 1, \ldots, 1 }_{ n } )^{ \mathrm{ T } } =\left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \end{array} \right) \end{eqnarray}
$\boldsymbol{ \rm{ e } }_k =( 0, \ldots, 0, \stackrel{k}{ 1 }, 0, \ldots, 0 )^{\mathrm{T}}$
\boldsymbol{ \rm{ e } }_k =( 0, \ldots, 0, \stackrel{k}{ 1 }, 0, \ldots, 0 )^{\mathrm{T}}
$\| x \|$
\| x \|
Combining the backslash "\" and the vertical bar "|" creates a double vertical line symbol "\\."
$\require{physics} \norm{ \dfrac{1}{2} }$
\require{physics} \norm{ \dfrac{1}{2} }
By using the "physics" extension, the command "\norm" can be used to create double vertical lines, representing the norm. The length of the vertical lines adjusts automatically based on the size of the contents within them.
$\vec{ a } \cdot \vec{ b }$
\vec{ a } \cdot \vec{ b }
$\vec{ a } \times \vec{ b }$
\vec{ a } \times \vec{ b }
Matrix
$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$
\begin{pmatrix} a & b \\ c & d \end{pmatrix}
If you want to enclose the matrix in parentheses, you can use the "pmatrix" (p from parentheses +matrix). If you use just "matrix" without adding "p," the matrix will be displayed without parentheses.
$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$
\begin{bmatrix} a & b \\ c & d \end{bmatrix}
To enclose a matrix in brackets, you can use the "bmatrix" (b from brackets +matrix). However, if you want the brackets to be curly brackets, you can use the "Bmatrix", with a capital "B".
$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$
\begin{vmatrix} a & b \\ c & d \end{vmatrix}
To enclose a matrix in vertical lines, you can use the "vmatrix" (v from vertical lines +matrix). However, if you want the vertical lines to be double lines, you can use the "Vmatrix", with a capital "V".
$A^{ \mathrm{ T } }$
A^{ \mathrm{ T } }
To represent the transpose of a matrix, you can use a Roman font uppercase "T" in the top right corner of the matrix.
${}^t \! A$
{}^t \! A
It is also common to represent the transpose of a matrix by writing a lowercase "t" in the top left corner of the matrix.
$\dim$
\dim
The notation "dimension" is derived from the dimension.
$\mathrm{ rank } A$
\mathrm{ rank } A
$\mathrm{ Tr } A$
\mathrm{ Tr } A
$\mathrm{ det }A$
\mathrm{ det }A
$\begin{eqnarray} \mathrm{ det }A = | A | = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \end{eqnarray}$
\begin{eqnarray} \mathrm{ det }A = | A | = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \end{eqnarray}
$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & I \end{pmatrix}$
\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & I \end{pmatrix}
Using the "pmatrix" environment, you can write a 3x3 matrix.
$\begin{eqnarray} \left( \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right) \end{eqnarray}$
\begin{eqnarray} \left( \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right) \end{eqnarray}
Using the "array" environment, you can write a matrix. The "ccc" is for center alignment.
$\begin{eqnarray} \left( \begin{array}{rrr} 111 & 111 & 111 \\ 22 & 0.2 & -2 \\ 3 & 3 & 3 \end{array} \right) \end{eqnarray}$
\begin{eqnarray} \left( \begin{array}{rrr} 111 & 111 & 111 \\ 22 & 0.2 & -2 \\ 3 & 3 & 3 \end{array} \right) \end{eqnarray}
Using the "array" environment, you can write a matrix with right alignment for each value by specifying "rrr".
$\begin{eqnarray} A = \left( \begin{array}{cccc} a_{ 11 } & a_{ 12 } & \ldots & a_{ 1n } \\ a_{ 21 } & a_{ 22 } & \ldots & a_{ 2n } \\ \vdots & \vdots & \ddots & \vdots \\ a_{ m1 } & a_{ m2 } & \ldots & a_{ mn } \end{array} \right) \end{eqnarray}$
\begin{eqnarray} A = \left( \begin{array}{cccc} a_{ 11 } & a_{ 12 } & \ldots & a_{ 1n } \\ a_{ 21 } & a_{ 22 } & \ldots & a_{ 2n } \\ \vdots & \vdots & \ddots & \vdots \\ a_{ m1 } & a_{ m2 } & \ldots & a_{ mn } \end{array} \right) \end{eqnarray}
It is an example of representing an m x n matrix using multiple dots.
$\begin{eqnarray} \left( \begin{array}{cc|cc} a & b & 0 & 0 \\ c & d & 0 & 0 \\ \hline x & y & 1 & 0 \\ z & w & 0 & 1 \\ \end{array} \right) \end{eqnarray}$
\begin{eqnarray} \left( \begin{array}{cc|cc} a & b & 0 & 0 \\ c & d & 0 & 0 \\ \hline x & y & 1 & 0 \\ z & w & 0 & 1 \\ \end{array} \right) \end{eqnarray}
Using "|" like the "cc|cc", you can draw vertical lines between columns. The "\hline" command can be used to draw horizontal lines.
$\begin{eqnarray} \begin{pmatrix} \lambda & 1 & & & 0 \\ & \lambda & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & 1 \\ 0 & & & & \lambda \end{pmatrix} \end{eqnarray}$
\begin{eqnarray} \begin{pmatrix} \lambda & 1 & & & 0 \\ & \lambda & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & 1 \\ 0 & & & & \lambda \end{pmatrix} \end{eqnarray}
$\begin{eqnarray} & & (-1)^{ i+j } \times \\[5pt] & & \quad \begin{vmatrix} a_{1,1} & \ldots & a_{1,j-1} & a_{1,j+1} & \ldots & a_{1,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1,1} & \ldots & a_{i-1, j-1} & a_{i-1, j+1} & \ldots & a_{i-1, n} \\ a_{i+1,1} & \ldots & a_{i+1, j-1} & a_{i+1, j+1} & \ldots & a_{i+1, n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & \ldots & a_{n, j-1} & a_{n, j+1} & \ldots & a_{n, n} \end{vmatrix} \end{eqnarray}$
\begin{eqnarray} & & (-1)^{ i+j } \times \\[5pt] & & \quad \begin{vmatrix} a_{1,1} & \ldots & a_{1,j-1} & a_{1,j+1} & \ldots & a_{1,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1,1} & \ldots & a_{i-1, j-1} & a_{i-1, j+1} & \ldots & a_{i-1, n} \\ a_{i+1,1} & \ldots & a_{i+1, j-1} & a_{i+1, j+1} & \ldots & a_{i+1, n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & \ldots & a_{n, j-1} & a_{n, j+1} & \ldots & a_{n, n} \end{vmatrix} \end{eqnarray}
Table
$\begin{array}{ccc} xxx & yyy & zzz \\ 1 & 2 & 3 \end{array}$
\begin{array}{ccc} xxx & yyy & zzz \\ 1 & 2 & 3 \end{array}
Using the "array" environment, you can create tables. The "ccc" aligns each value in the table cells to the center.
$\begin{array}{|c|c|c|} xxx & yyy & zzz \\ 1 & 2 & 3 \\ \end{array}$
\begin{array}{|c|c|c|} xxx & yyy & zzz \\ 1 & 2 & 3 \\ \end{array}
By using "|" like the "c|c|c" specification, you can include vertical lines to separate the columns in the table.
$\begin{array}{ccc} \hline xxx & yyy & zzz \\ \hline 1 & 2 & 3 \\ \hline \end{array}$
\begin{array}{ccc} \hline xxx & yyy & zzz \\ \hline 1 & 2 & 3 \\ \hline \end{array}
The command "\hline" is used to insert a horizontal line in a table. It is derived from hozirontal line.
$\begin{array}{c|ccccc} x & \cdots & -1 & \cdots & 1 & \cdots \\ \hline f’(x) & + & 0 & – & 0 & + \\ \hline f(x) & \nearrow & e & \searrow & -e & \nearrow \end{array}$
\begin{array}{c|ccccc} x & \cdots & -1 & \cdots & 1 & \cdots \\ \hline f’(x) & + & 0 & – & 0 & + \\ \hline f(x) & \nearrow & e & \searrow & -e & \nearrow \end{array}
Commutative Diagram
$\require{AMScd} \begin{CD} A @>{f}>> B\\ @V{gg}VV {\large\circlearrowleft} @VV{hh}V\\ C @>>{k}> D \end{CD}$
\require{AMScd} \begin{CD} A @>{f}>> B\\ @V{gg}VV {\large\circlearrowleft} @VV{hh}V\\ C @>>{k}> D \end{CD}
Symbol
Line
$| x |$
| x |
$\vert x \vert$
\vert x \vert
It is derived from vertical line.
$\{ x \mid x \in A \}$
\{ x \mid x \in A \}
By using the "\mid" command, you can create a vertical line that has spaces before and after it.
$\Vert x \Vert$
\Vert x \Vert
By using the uppercase version of the "\vert" command as "\Vert", you can create a double vertical line in your document.
$AB \parallel CD$
AB \parallel CD
By using the "\parallel" command, you can create a double vertical line that represents parallelism.
$\overline{ A }$
\overline{ A }
$\bar{ A }$
\bar{ A }
$\underline{ A }$
\underline{ A }
$/$
/
The slash symbol ("/") is used as is, without any additional commands or modifications.
$\backslash$
\backslash
In MathJax, the backslash "\" has a special meaning, so if you want to display it as a symbol, you need to write "\backslash".
$\diagdown$
\diagdown
It is a diagonal line that slopes downwards on the right side.
$\diagup$
\diagup
It is a diagonal line that slopes upwards on the right side.
$\cancel{a}$
\cancel{a}
By using the "cancel", you can create a diagonal line to cancel out specific expressions.
$\bcancel{a}$
\bcancel{a}
The command "\bcancel" is similar to "\cancel," but it produces a diagonal line with the opposite direction.
$\xcancel{a}$
\xcancel{a}
The command "\xcancel" creates a cross (x) symbol over the content. It can be seen as a combination of the "\cancel" and "\bcancel".
$\cancelto{A}{a}$
\cancelto{A}{a}
The combination of a diagonal cancel line and an arrow.
$\begin{eqnarray} \frac{\cancel{2}}{\cancel{6}}=\frac{1}{3} \end{eqnarray}$
\begin{eqnarray} \frac{\cancel{2}}{\cancel{6}}=\frac{1}{3} \end{eqnarray}
By using the "cancel", you can create a diagonal line to cancel out specific expressions.
$\begin{eqnarray} \frac{1}{\cancel{3}} \times \frac{\cancelto{2}{6}}{5} \end{eqnarray}$
\begin{eqnarray} \frac{1}{\cancel{3}} \times \frac{\cancelto{2}{6}}{5} \end{eqnarray}
The combination of a diagonal cancel line and an arrow.
$\llcorner$
\llcorner
The symbol "llcorner" represents the lower left corner.
$\lrcorner$
\lrcorner
The symbol "lrcorner" represents the lower right corner.
$\ulcorner$
\ulcorner
The symbol "ulcorner" represents the up left corner.
$\urcorner$
\urcorner
The symbol "urcorner" represents the up right corner.
Arrow
$\leftarrow$
\leftarrow
Left awwor.
$\longleftarrow$
\longleftarrow
Long left awwor.
$\rightarrow$
\rightarrow
Right awwor.
$\longrightarrow$
\longrightarrow
$\uparrow$
\uparrow
Up arrow.
$\downarrow$
\downarrow
Down arrow.
$\leftrightarrow$
\leftrightarrow
Left and right arrow (bidirectional arrow).
$\longleftrightarrow$
\longleftrightarrow
$\updownarrow$
\updownarrow
Up and down arrow (vertical bidirectional arrow).
$\Leftarrow$
\Leftarrow
When you capitalize the first "l" to "L" in the command, the line becomes double.
$\Longleftarrow$
\Longleftarrow
$\Rightarrow$
\Rightarrow
$\Longrightarrow$
\Longrightarrow
$\Uparrow$
\Uparrow
$\Downarrow$
\Downarrow
$\Leftrightarrow$
\Leftrightarrow
$\Longleftrightarrow$
\Longleftrightarrow
$\Updownarrow$
\Updownarrow
$\nearrow$
\nearrow
An arrow pointing in the direction of the upper-right or northeast direction.
$\searrow$
\searrow
An arrow pointing in the direction of the down-right or southeast direction.
$\nwarrow$
\nwarrow
An arrow pointing in the direction of the upper-left or northwest direction.
$\swarrow$
\swarrow
An arrow pointing in the direction of the down-left or southwest direction.
$\mapsto$
\mapsto
It is derived from "maps to".
$\longmapsto$
\longmapsto
$\vec{ a }$
\vec{ a }
The arrow symbol used in vectors.
$\overrightarrow{ AB }$
\overrightarrow{ AB }
You can use the notation of placing a large arrow above the character.
$\overleftarrow{ AB }$
\overleftarrow{ AB }
$\circlearrowright$
\circlearrowright
A clockwise circular arrow
$\circlearrowleft$
\circlearrowleft
A counterclockwise circular arrow
Bracket
$( x )$
( x )
Parentheses, represented by "(" and ")", are used as they are and do not require any special notation or commands.
$[ x ]$
[ x ]
Brackets, represented by "[" and "]", are used as they are and do not require any special notation or commands.
$\lbrack x \rbrack$
\lbrack x \rbrack
The term "brack" is used as a shorthand for brackets "[" and "]".
$\lceil x \rfloor$
\lceil x \rfloor
By combining the ceiling function and the floor function, you can create a notation that represents Japanese brackets.
$\lfloor x \rceil$
\lfloor x \rceil
$\{ x \}$
\{ x \}
Braces have special meaning, so if you want to display them as symbols, you need to use a backslash ("\") before them.
$\lbrace x \rbrace$
\lbrace x \rbrace
You can also use the term "\brace" for braces.
$\langle x \rangle$
\langle x \rangle
By using the "\angle", you can create angle brackets.
$\left[ \frac{ 1 }{ 2 } \right]$
\left[ \frac{ 1 }{ 2 } \right]
When you want to enclose a large expression within parentheses, you can use the "\left" and "\right" before the parentheses.
$\overbrace{ x + y + z }$
\overbrace{ x + y + z }
By using the "\overbrace", you can add a brace above an expression.
$\overbrace{ a_1 + \cdots + a_n }^{ n }$
\overbrace{ a_1 + \cdots + a_n }^{ n }
By combining the "\overbrace" with the "^" symbol, you can add text above the brace.
$\underbrace{ x + y + z }$
\underbrace{ x + y + z }
By using the "\underbrace", you can add a brace below an expression.。
$\underbrace{ a_1 + \cdots + a_n }_{ n }$
\underbrace{ a_1 + \cdots + a_n }_{ n }
By combining the "\underbrace" with the "_" symbol, you can add text below the brace.
Dot
$\cdot$
\cdot
The center dot.
$\cdots$
\cdots
By adding an "s" to the command "\cdot", you can create multiple dots instead of a single dot.
$\ldots$
\ldots
The lower dot.
$\vdots$
\vdots
The vertical dots.
$\ddots$
\ddots
The diagonal dots.
$\dot{ a }$
\dot{ a }
By using the "\dot", you can place a small dot above a character.
$\ddot{ a }$
\ddot{ a }
By stacking the "d", you can add additional dots above the character. Each stacked "d" adds another dot, allowing you to create a sequence of up to four dots.
Circle
$\circ$
\circ
It is derived from the circle.
$\bullet$
\bullet
It is derived from the bullet point used in bullet lists.
$\bigcirc$
\bigcirc
By adding the "big" to certain commands, you can increase their size.
$\oplus$
\oplus
A "+" sign is placed inside the letter "o".
$\ominus$
\ominus
A "-" sign is placed inside the letter "o".
$\otimes$
\otimes
A "times" (multiplication symbol) is placed inside the letter "o".
$\odot$
\odot
A dot is placed inside the letter "o".
Triangle
$\triangle$
\triangle
$\triangledown$
\triangledown
Adding "down" to the "\triangle" makes it point downward.
$\bigtriangleup$
\bigtriangleup
$\bigtriangledown$
\bigtriangledown
$\triangleleft$
\triangleleft
Adding "left" to the "triangle" indicates that the triangle is facing towards the left side.
$\lhd$
\lhd
The term "lhd" is an abbreviation derived from "left-hand diamond."
$\triangleright$
\triangleright
Adding "right" to the "triangle" indicates that the triangle is facing towards the right side.
$\rhd$
\rhd
The term "rhd" is an abbreviation derived from "right-hand diamond."
$\unlhd$
\unlhd
The "unlhd" is "underline" and "lhd".
$\unrhd$
\unrhd
The "unrhd" is "underline" and "rhd".
$\blacktriangle$
\blacktriangle
Adding "black" to the "triangle," "down triangle," "left triangle," and "right triangle" indicates that these triangle symbols are filled in black.
Rectangle
$\square$
\square
$\Box$
\Box
It is important to note that "Box" is spelled with an uppercase "B".
$\boxplus$
\boxplus
A "+" sign (plus) is placed inside the box.
$\boxminus$
\boxminus
A "-" sign (minus) is placed inside the box.
$\boxtimes$
\boxtimes
A "times" (multiplication symbol) is placed inside the box.
$\boxdot$
\boxdot
A dot is placed inside the box.
$\blacksquare$
\blacksquare
A square shape that is filled in black.
$\diamond$
\diamond
$\Diamond$
\Diamond
When the "d" in "diamond" is capitalized, it represents a larger-sized diamond shape.
$\lozenge$
\lozenge
The "lozenge" is a term used to refer to a diamond.
$\blacklozenge$
\blacklozenge
A lozenge shape that is filled in black.
$\boxed{ abc }$
\boxed{ abc }
The "\boxed" is used to enclose an equation within a box.
$\fbox{ abc }$
\fbox{ abc }
The "\fbox" is used to enclose text within a frame.
$\bbox[yellow, 5pt, border: 2px dotted red]{abc}$
\bbox[yellow, 5pt, border: 2px dotted red]{abc}
The "\bbox" is not a native command in $\TeX$, but it can be used in MathJax to finely customize the appearance of a framed box around text or equation. It allows you to specify various settings such as background color, margin, and style by separating them with commas within the brackets, while the equation is written within braces. The "\bbox" is derived from "bounding box".
Binary Operations
$\ast$
\ast
The "\ast" is derived from the "asterisk."
$\star$
\star
$\ltimes$
\ltimes
It is a combination of the left line and the times symbol.
$\rtimes$
\rtimes
It is a combination of the right line and the times symbol.
$\Join$
\Join
It is a symbol used to represent natural join. It can also be represented using the "\bowtie", named after its shape.
General Symbol
$\$$
\$
In MathJax, certain characters like "\$", "#", "%", and "&" have special meaning. To display these characters themselves, you can prefix them with a backslash "\".
$\And$
\And
The ampersand symbol "&" has special meaning in MathJax, so if you want to display the ampersand symbol itself, you can use either "&" or "\And".
$\yen$
\yen
The yen "\" symbol has special meaning in MathJax and is used for commands, so if you want to display the yen symbol, you need to use a specific notation.
$\checkmark$
\checkmark
$\diamondsuit$
\diamondsuit
It is the symbol used in playing card. Compared to a diamond shape, the edges are slightly concave inward.
$\heartsuit$
\heartsuit
It is the symbol used in playing card.
$\clubsuit$
\clubsuit
It is the symbol used in playing card.
$\spadesuit$
\spadesuit
It is the symbol used in playing card.
$\flat$
\flat
$\natural$
\natural
$\sharp$
\sharp
$\dagger$
\dagger
$\ddagger$
\ddagger
Text
Space
$aaa \ bbb$
aaa \ bbb
To represent a space, you can use a combination of "\ " and a space. Using just a space character alone may not display as intended.
$aaa \quad bbb$
aaa \quad bbb
To represent a wider space, you can either repeat the space multiple times or use the "\quad" command. The term "quad" is derived from "quadrat," which refers to a square frame. In applications like Word, a space is sometimes represented as a square shape, and imagining that can provide a clearer understanding of the command.
$aaa \qquad bbb$
aaa \qquad bbb
The more "q"s you add to "quad", the wider the space becomes.
$aaa \hspace{ 10pt } bbb$
aaa \hspace{ 10pt } bbb
The command "\hspace" is used to create horizontal space. It allows you to specify the desired size of the space you want to create.
$aaa \! bbb$
aaa \! bbb
By combining the commands "\" and "!", you can reduce the space between two elements.
$\begin{eqnarray} aaa \\ bbb \end{eqnarray}$
\begin{eqnarray} aaa \\ bbb \end{eqnarray}
By doubling the backslash "\" or using the command "\cr", you can create a line break or new line. The "cr" stands for "carriage return," which represents the control character that moves the cursor to the beginning of the line.
$\begin{eqnarray} aaa \\[5pt] bbb \end{eqnarray}$
\begin{eqnarray} aaa \\[5pt] bbb \end{eqnarray}
After doubling the backslash "\" to indicate a line break, you can specify the width of the line break using additional commands.
$\begin{eqnarray} & & \frac{1}{2} +\frac{1}{3} +\frac{1}{6} \\[ 5pt ] &=& \frac{3}{6} +\frac{2}{6} +\frac{1}{6} \\ &=& 1 \end{eqnarray}$
\begin{eqnarray} & & \frac{1}{2} +\frac{1}{3} +\frac{1}{6} \\[ 5pt ] &=& \frac{3}{6} +\frac{2}{6} +\frac{1}{6} \\ &=& 1 \end{eqnarray}
Letter size
$\tiny{ abc ABC }$
\tiny{ abc ABC }
$\scriptsize{ abc ABC }$
\scriptsize{ abc ABC }
$\small{ abc ABC }$
\small{ abc ABC }
$\normalsize{ abc ABC }$
\normalsize{ abc ABC }
$\large{ abc ABC }$
\large{ abc ABC }
$\Large{ abc ABC }$
\Large{ abc ABC }
$\LARGE{ abc ABC }$
\LARGE{ abc ABC }
$\huge{ abc ABC }$
\huge{ abc ABC }
$\Huge{ abc ABC }$
\Huge{ abc ABC }
Font
$\mathrm{ ABC }$
\mathrm{ ABC }
It is derived from the Roman typeface (RoMan).
$\mathtt{ ABC }$
\mathtt{ ABC }
It is derived from typewriter typestyle.
$\mathsf{ ABC }$
\mathsf{ ABC }
It is derived from sans serif.
$\mathcal{ ABC }$
\mathcal{ ABC }
It is derived from calligraphy.
$\mathbf{ ABC }$
\mathbf{ ABC }
It is derived from bold font.
$\mathit{ ABC }$
\mathit{ ABC }
It is derived from italic.
$\mathbb{ ABC }$
\mathbb{ ABC }
It is derived from blackboard bold.
$\mathscr{ ABC }$
\mathscr{ ABC }
It is derived from script.
$\mathfrak{ ABC }$
\mathfrak{ ABC }
It is derived from Fraktur.
$\mathrm{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }$
\mathrm{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }
$\mathtt{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }$
\mathtt{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }
$\mathsf{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }$
\mathsf{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }
$\mathcal{ ABCDEFGHIJKLMNOPQRSTUVWXYZ }$
\mathcal{ ABCDEFGHIJKLMNOPQRSTUVWXYZ }
$\mathbf{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }$
\mathbf{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }
$\mathit{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }$
\mathit{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }
$\mathbb{ ABCDEFGHIJKLMNOPQRSTUVWXYZ }$
\mathbb{ ABCDEFGHIJKLMNOPQRSTUVWXYZ }
$\mathscr{ ABCDEFGHIJKLMNOPQRSTUVWXYZ }$
\mathscr{ ABCDEFGHIJKLMNOPQRSTUVWXYZ }
$\mathfrak{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }$
\mathfrak{ ABCDEFGHIJKLMNOPQRSTUVWXYZ \ abcdefghijklmnopqrstuvwxyz }
Superscript and Subscript
$a^{ xy }$
a^{ xy }
${}^{ xy } a$
{}^{ xy } a
$a_{ xy }$
a_{ xy }
${}_{ xy } a$
{}_{ xy } a
$\begin{eqnarray} a_n^2 + a_{ n + 1 }^2 = a_{ 2n + 1 } \end{eqnarray}$
\begin{eqnarray} a_n^2 + a_{ n + 1 }^2 = a_{ 2n + 1 } \end{eqnarray}
Accent
$\hat{ a }$
\hat{ a }
$\grave{ a }$
\grave{ a }
$\acute{ a }$
\acute{ a }
$\dot{ a }$
\dot{ a }
$\ddot{ a }$
\ddot{ a }
$\bar{ a }$
\bar{ a }
$\vec{ a }$
\vec{ a }
$\check{ a }$
\check{ a }
$\tilde{ a }$
\tilde{ a }
$\breve{ a }$
\breve{ a }
$\widehat{ AAA }$
\widehat{ AAA }
$\widetilde{ AAA }$
\widetilde{ AAA }
Alphabet
$\forall$
\forall
The symbol consists of an upside-down "A".
$\exists$
\exists
The symbol consists of an upside-down "E".
$\Finv$
\Finv
The symbol consists of an upside-down "F".
$\hbar$
\hbar
The symbol is a combination of the letter "h" and a bar. It is sometimes used to represent the reduced Planck constant, also known as the Dirac constant.
$\imath$
\imath
"i" without a above dot.
$\jmath$
\jmath
"j" without a above dot.
$\Bbbk$
\Bbbk
It is "k" in blackboard bold.
$\ell$
\ell
It is the cursive letter "l".
$\circledR$
\circledR
It is a symbol consisting of the letter "R" inside a circle.
$\circledS$
\circledS
It is a symbol consisting of the letter "S" inside a circle.
Greek alphabet
$\alpha$
\alpha
$\beta$
\beta
$\gamma$
\gamma
$\delta$
\delta
$\epsilon$
\epsilon
$\varepsilon$
\varepsilon
$\zeta$
\zeta
$\eta$
\eta
$\theta$
\theta
$\vartheta$
\vartheta
$\iota$
\iota
$\kappa$
\kappa
$\lambda$
\lambda
$\mu$
\mu
$\nu$
\nu
$\xi$
\xi
$o$
o
It is the same as the alphabet.
$\pi$
\pi
$\varpi$
\varpi
$\rho$
\rho
$\varrho$
\varrho
$\sigma$
\sigma
$\varsigma$
\varsigma
$\tau$
\tau
$\upsilon$
\upsilon
$\phi$
\phi
$\varphi$
\varphi
$\chi$
\chi
$\psi$
\psi
$\omega$
\omega
$A$
A
It is the same as the alphabet.
$B$
B
It is the same as the alphabet.
$\Gamma$
\Gamma
$\varGamma$
\varGamma
$\Delta$
\Delta
$\varDelta$
\varDelta
$E$
E
It is the same as the alphabet.
$Z$
Z
It is the same as the alphabet.
$H$
H
It is the same as the alphabet.
$\Theta$
\Theta
$\varTheta$
\varTheta
$I$
I
It is the same as the alphabet.
$K$
K
It is the same as the alphabet.
$\Lambda$
\Lambda
$\varLambda$
\varLambda
$M$
M
It is the same as the alphabet.
$N$
N
It is the same as the alphabet.
$\Xi$
\Xi
$\varXi$
\varXi
$O$
O
It is the same as the alphabet.
$\Pi$
\Pi
$\varPi$
\varPi
$P$
P
It is the same as the alphabet.
$\Sigma$
\Sigma
$\varSigma$
\varSigma
$T$
T
It is the same as the alphabet.
$\Upsilon$
\Upsilon
$\varUpsilon$
\varUpsilon
$\Phi$
\Phi
$\varPhi$
\varPhi
$X$
X
It is the same as the alphabet.
$\Psi$
\Psi
$\varPsi$
\varPsi
$\Omega$
\Omega
$\varOmega$
\varOmega
HTML
$\color{red}{a \times b}$
\color{red}{a \times b}
By using the "\color" command and specifying a color name, you can change the color of mathematical symbols within an equation.
$\color{ #ff0000 }{a \times b}$
\color{ #ff0000 }{a \times b}
With the "\color" command, you can also specify colors using hexadecimal color codes.
$\colorbox{red}{ Important! }$
\colorbox{red}{ Important! }
By using the "\colorbox" command, you can specify the background color for a block of text.
$\colorbox{red}{$a \times b$}$
\colorbox{red}{$a \times b$}
To include mathematical expressions within the "\colorbox" command, you can enclose the mathematical expression in $
symbols to switch to math mode.
$\fcolorbox{black}{ #00ff00 }{$a \times b$}$
\fcolorbox{black}{ #00ff00 }{$a \times b$}
\fcolorbox is a combination of the frame and colorbox. It allows for specifying the frame color, background color, and text content in that order. To write mathematical expressions, you can use the $
to switch to math mode.
$\bbox[yellow, 5pt, border: 2px dotted red]{abc}$
\bbox[yellow, 5pt, border: 2px dotted red]{abc}
The "\bbox" command is for the bounding box. It allows for more detailed customization in blackets, such as background color, margin, and style. The curly brackets is for the equation. The "\bbox" is not a standard command in $\TeX$.
$\unicode{x0041}$
\unicode{x0041}
By using the "\unicode" command followed by the Unicode character code, you can display a particular character in your text.
$\begin{eqnarray} \unicode{x5F45}\text{は、弓へんに剪。} \end{eqnarray}$
\begin{eqnarray} \unicode{x5F45}\text{は、弓へんに剪。} \end{eqnarray}
It's a sample using the "\unicode"
Special character
$\S$
\S
$\aleph$
\aleph
The Hebrew letter "Aleph".
$\beth$
\beth
The Hebrew letter "Bet".
$\gimel$
\gimel
The Hebrew letter "Gimel".
$\daleth$
\daleth
The Hebrew letter "Dalet".
Logo
$\TeX$
\TeX
It represents the logo of TeX.
$\LaTeX$
\LaTeX
It represents the logo of LaTeX.