Arithmetic Operation
$1 + 2$
1 + 2
We use the symbols as it is.
$3 - 1$
3 - 1
We use the symbols as it is.
$2 \times 3$
2 \times 3
It comes from reading "2 x 3" as "2 times 3".
$6 \divisionsymbol 3$
6 \div 3
\div comes from "divide". If you are using the physics extension, the div will be overwritten. So you must duplicate it before it is overwritten.
$\pm 1$
\pm 1
\pm comes from "plus and minus".
$\mp 1$
\mp 1
\mp comes from "minus and plus".
$a \cdot b = ab$
a \cdot b = ab
\cdot comes from "center dot".
$a \divisionsymbol b = \frac{a}{b}$
a \div b = \frac{a}{b}
This is the relationship between division and fractions.
$\begin{array}{r} 67 \\[-3pt] \underline{\times\phantom{0}63}\\[-3pt] 201 \\[-3pt] \underline{\phantom{0}402\phantom{0}} \\[-3pt] 4221 \end{array}$
\begin{array}{r} 67 \\[-3pt] \underline{\times\phantom{0}63}\\[-3pt] 201 \\[-3pt] \underline{\phantom{0}402\phantom{0}} \\[-3pt] 4221 \end{array}
The array environment is used to specify right-justification. If you use underline, a line will be drawn underneath the text. The phantom allocates a space for the characters you specify. -3pt is a way of writing to reduce the width of a line break a little.
$\begin{array}{r} 7.6 \\[-3pt] 25\enclose{longdiv}{190\phantom{0}} \\[-3pt] \underline{175\phantom{.0}} \\[-3pt] 15\phantom{.}0 \\[-3pt] \underline{15\phantom{.}0} \\[-3pt] \phantom{000}0 \end{array}$
\begin{array}{r} 7.6 \\[-3pt] 25\enclose{longdiv}{190\phantom{0}} \\[-3pt] \underline{175\phantom{.0}} \\[-3pt] 15\phantom{.}0 \\[-3pt] \underline{15\phantom{.}0} \\[-3pt] \phantom{000}0 \end{array}
You can use \enclose{longdiv} to represent the long division. The phantom is used to substitute whitespace for the specified characters and align them.
$a \equiv b \mod n$
a \equiv b \mod n
\mod and \equiv come from modular arithmetic and equivalence. Three lines are for describe equivalence.
$a \equiv b \pmod n$
a \equiv b \pmod n
\pmod means "mod with parentheses".
$\gcd(a, b) = \gcd(b, a \bmod b)$
\gcd(a, b) = \gcd(b, a \bmod b)
\bmod means "mod used like a binary operator".
$x \propto y$
x \propto y
\propto comes from "proportional to".