Matrix
$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$
\begin{pmatrix} a & b \\ c & d \end{pmatrix}
If you want to enclose the matrix in parentheses, you can use the "pmatrix" (p from parentheses +matrix). If you use just "matrix" without adding "p," the matrix will be displayed without parentheses.
$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$
\begin{bmatrix} a & b \\ c & d \end{bmatrix}
To enclose a matrix in brackets, you can use the "bmatrix" (b from brackets +matrix). However, if you want the brackets to be curly brackets, you can use the "Bmatrix", with a capital "B".
$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$
\begin{vmatrix} a & b \\ c & d \end{vmatrix}
To enclose a matrix in vertical lines, you can use the "vmatrix" (v from vertical lines +matrix). However, if you want the vertical lines to be double lines, you can use the "Vmatrix", with a capital "V".
$A^{ \mathrm{ T } }$
A^{ \mathrm{ T } }
To represent the transpose of a matrix, you can use a Roman font uppercase "T" in the top right corner of the matrix.
${}^t \! A$
{}^t \! A
It is also common to represent the transpose of a matrix by writing a lowercase "t" in the top left corner of the matrix.
$\dim$
\dim
The notation "dimension" is derived from the dimension.
$\mathrm{ rank } A$
\mathrm{ rank } A
$\mathrm{ Tr } A$
\mathrm{ Tr } A
$\mathrm{ det }A$
\mathrm{ det }A
$\begin{eqnarray} \mathrm{ det }A = | A | = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \end{eqnarray}$
\begin{eqnarray} \mathrm{ det }A = | A | = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \end{eqnarray}
$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & I \end{pmatrix}$
\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & I \end{pmatrix}
Using the "pmatrix" environment, you can write a 3x3 matrix.
$\begin{eqnarray} \left( \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right) \end{eqnarray}$
\begin{eqnarray} \left( \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right) \end{eqnarray}
Using the "array" environment, you can write a matrix. The "ccc" is for center alignment.
$\begin{eqnarray} \left( \begin{array}{rrr} 111 & 111 & 111 \\ 22 & 0.2 & -2 \\ 3 & 3 & 3 \end{array} \right) \end{eqnarray}$
\begin{eqnarray} \left( \begin{array}{rrr} 111 & 111 & 111 \\ 22 & 0.2 & -2 \\ 3 & 3 & 3 \end{array} \right) \end{eqnarray}
Using the "array" environment, you can write a matrix with right alignment for each value by specifying "rrr".
$\begin{eqnarray} A = \left( \begin{array}{cccc} a_{ 11 } & a_{ 12 } & \ldots & a_{ 1n } \\ a_{ 21 } & a_{ 22 } & \ldots & a_{ 2n } \\ \vdots & \vdots & \ddots & \vdots \\ a_{ m1 } & a_{ m2 } & \ldots & a_{ mn } \end{array} \right) \end{eqnarray}$
\begin{eqnarray} A = \left( \begin{array}{cccc} a_{ 11 } & a_{ 12 } & \ldots & a_{ 1n } \\ a_{ 21 } & a_{ 22 } & \ldots & a_{ 2n } \\ \vdots & \vdots & \ddots & \vdots \\ a_{ m1 } & a_{ m2 } & \ldots & a_{ mn } \end{array} \right) \end{eqnarray}
It is an example of representing an m x n matrix using multiple dots.
$\begin{eqnarray} \left( \begin{array}{cc|cc} a & b & 0 & 0 \\ c & d & 0 & 0 \\ \hline x & y & 1 & 0 \\ z & w & 0 & 1 \\ \end{array} \right) \end{eqnarray}$
\begin{eqnarray} \left( \begin{array}{cc|cc} a & b & 0 & 0 \\ c & d & 0 & 0 \\ \hline x & y & 1 & 0 \\ z & w & 0 & 1 \\ \end{array} \right) \end{eqnarray}
Using "|" like the "cc|cc", you can draw vertical lines between columns. The "\hline" command can be used to draw horizontal lines.
$\begin{eqnarray} \begin{pmatrix} \lambda & 1 & & & 0 \\ & \lambda & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & 1 \\ 0 & & & & \lambda \end{pmatrix} \end{eqnarray}$
\begin{eqnarray} \begin{pmatrix} \lambda & 1 & & & 0 \\ & \lambda & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & 1 \\ 0 & & & & \lambda \end{pmatrix} \end{eqnarray}
$\begin{eqnarray} & & (-1)^{ i+j } \times \\[5pt] & & \quad \begin{vmatrix} a_{1,1} & \ldots & a_{1,j-1} & a_{1,j+1} & \ldots & a_{1,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1,1} & \ldots & a_{i-1, j-1} & a_{i-1, j+1} & \ldots & a_{i-1, n} \\ a_{i+1,1} & \ldots & a_{i+1, j-1} & a_{i+1, j+1} & \ldots & a_{i+1, n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & \ldots & a_{n, j-1} & a_{n, j+1} & \ldots & a_{n, n} \end{vmatrix} \end{eqnarray}$
\begin{eqnarray} & & (-1)^{ i+j } \times \\[5pt] & & \quad \begin{vmatrix} a_{1,1} & \ldots & a_{1,j-1} & a_{1,j+1} & \ldots & a_{1,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1,1} & \ldots & a_{i-1, j-1} & a_{i-1, j+1} & \ldots & a_{i-1, n} \\ a_{i+1,1} & \ldots & a_{i+1, j-1} & a_{i+1, j+1} & \ldots & a_{i+1, n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & \ldots & a_{n, j-1} & a_{n, j+1} & \ldots & a_{n, n} \end{vmatrix} \end{eqnarray}