Logic Notation
$P \implies Q$
P \implies Q
$P \Rightarrow Q$
P \Rightarrow Q
The right arrow is sometimes used to indicate "implication".
$P \to Q$
P \to Q
The single line arrow may be used to indicate "implication".
$P \Leftarrow Q$
P \Leftarrow Q
$P \gets Q$
P \gets Q
A single arrow to the left.
$P \iff Q$
P \iff Q
\iff means "if and only if".
$P \Leftrightarrow Q$
P \Leftrightarrow Q
The left right double arrow may be used to indicate "equivalence".
$P \leftrightarrow Q$
P \leftrightarrow Q
The left right arrow may be used to indicate "equivalence".
$P \equiv Q$
P \equiv Q
\equiv comes from "equivalence".
$\therefore$
\therefore
$\because$
\because
$\forall x$
\forall x
This is Turned A.
$\exists x$
\exists x
This is Turned E.
$\nexists$
\nexists
\nexists come from "not" and "exists".
$\begin{eqnarray} & & {}^\forall \varepsilon \gt 0, {}^\exists \delta \gt 0 \mbox{ s.t. } \\ & & {}^\forall x \in \mathbb{ R }, 0 \lt |x - a| \lt \delta \implies |f(x) - b| \lt \varepsilon \end{eqnarray}$
\begin{eqnarray} & & {}^\forall \varepsilon \gt 0, {}^\exists \delta \gt 0 \mbox{ s.t. } \\ & & {}^\forall x \in \mathbb{ R }, 0 \lt |x - a| \lt \delta \implies |f(x) - b| \lt \varepsilon \end{eqnarray}
This is the (ε, δ)-definition of limit.
$P \land Q$
P \land Q
\land comes from "And in logic".
$P \lor Q$
P \lor Q
\lor comes from "Or in logic".
$\lnot P$
\lnot P
\lnot comes from "Not in logic".
$\overline{ P }$
\overline{ P }
Another way to show negation is to draw a line over the letter.
$!P$
!P
You can also write an "!" in front of the letter to indicate negation.
$P \oplus Q$
P \oplus Q
A + ("plus") sign in a circle ("O") indicates an exclusive disjunction.
$P \veebar Q$
P \veebar Q
This symbol is a combination of the letters V ("vee") and horizontal line ("bar"), and is sometimes used to represent an exclusive disjunction.
$P \oplus Q = (P \land \lnot Q) \lor (\lnot P \land Q)$
P \oplus Q = (P \land \lnot Q) \lor (\lnot P \land Q)
This is a formula relating exclusive disjunction to logical disjunction, logical product, and negation.
$\top$
\top
This is used to show tautology. There's a horizontal line on top.
$\bot$
\bot
This is used to show contradiction. There's a horizontal line on bottom.
$P \vdash Q$
P \vdash Q
\vdash comes from "vertical line" and "dash".
$P \models Q$
P \models Q
The same notation applies when using \vDash instead of \models.