Differentiation
$\frac{ dy }{ dx }$
\frac{ dy }{ dx }
This represents the derivative of y with respect to x expressed in fractional form.
$\frac{ \mathrm{ d } y }{ \mathrm{ d } x }$
\frac{ \mathrm{ d } y }{ \mathrm{ d } x }
This is the Roman font representation of "d" used in the previous example.
$\require{physics} \dv{y}{x}$
\require{physics} \dv{y}{x}
By using the "physics" extension, we can simplify the notation of "d" in Roman font. The "dv" is derived from "derivative." When we write it with a single curly bracket, only the denominator part remains.
$\frac{ d^n y }{ dx^n }$
\frac{ d^n y }{ dx^n }
This represents the expression of the nth derivative of y with respect to x in fractional form.
$\require{physics} \dv[n]{f}{x}$
\require{physics} \dv[n]{f}{x}
By using the "physics" extension, we can simplify the notation for the nth derivative.
$\left. \frac{dy}{dx} \right|_{x=a}$
\left. \frac{dy}{dx} \right|_{x=a}
A long vertical line drawn on the right side represents the evaluation of the expression at x=a. It is indicated using a subscript notation.
$\require{physics} \eval{\dv{y}{x}}_{x=a}$
\require{physics} \eval{\dv{y}{x}}_{x=a}
By using the "physics" extension, we can simplify the expression for the value of the derivative at x=a.
$f'$
f'
With the use of the apostrophe symbol (') in notation, we can represent the derivative.
$f^{\prime\prime}$
f^{\prime\prime}
If using two consecutive apostrophe symbols ('') does not display correctly, the notation "\prime" can be used instead to represent the derivative.
$f^{ ( n ) }$
f^{ ( n ) }
$Df$
Df
$D_x f$
D_x f
$D^n f$
D^n f
$\dot{y} = \frac{dy}{dt}$
\dot{y} = \frac{dy}{dt}
There is also a method of representing differentiation by placing a dot above a character.
$\ddddot{ y } = \frac{ d^4 y }{ dt^4 }$
\ddddot{ y } = \frac{ d^4 y }{ dt^4 }
Increasing "d" increases the number of dots.
$\begin{eqnarray} f'(x) = \frac{ df }{ dx } = \lim_{ \Delta x \to 0 } \frac{ f(x + \Delta x) - f(x) }{ \Delta x } \end{eqnarray}$
\begin{eqnarray} f'(x) = \frac{ df }{ dx } = \lim_{ \Delta x \to 0 } \frac{ f(x + \Delta x) - f(x) }{ \Delta x } \end{eqnarray}
$\frac{ \partial f }{ \partial x }$
\frac{ \partial f }{ \partial x }
It is derived from the partial derivative.
$\frac{ \partial }{ \partial y } \frac{ \partial }{ \partial x } z$
\frac{ \partial }{ \partial y } \frac{ \partial }{ \partial x } z
$\frac{ \partial^n f}{ \partial x^n }$
\frac{ \partial^n f}{ \partial x^n }
$\require{physics} \pdv{f}{x}$
\require{physics} \pdv{f}{x}
By using the "physics" extension, we can simplify the notation for expressing partial derivatives.
$\require{physics} \pdv{f}{x}{y}$
\require{physics} \pdv{f}{x}{y}
By utilizing the "physics" extension, we can simplify the notation for representing second-order partial derivatives.
$\require{physics} \pdv[n]{f}{x}$
\require{physics} \pdv[n]{f}{x}
By using the "physics" extension, we can simplify the notation for representing nth-order partial derivatives. Simply write "n" inside brackets to denote the order of the partial derivative.
$f_x$
f_x
$f_{ xy }$
f_{ xy }
$\nabla f$
\nabla f
$\Delta f$
\Delta f
$\begin{eqnarray} \Delta \varphi = \nabla^2 \varphi = \frac{ \partial^2 \varphi }{ \partial x^2 } + \frac{ \partial^2 \varphi }{ \partial y^2 } + \frac{ \partial^2 \varphi }{ \partial z^2 } \end{eqnarray}$
\begin{eqnarray} \Delta \varphi = \nabla^2 \varphi = \frac{ \partial^2 \varphi }{ \partial x^2 } + \frac{ \partial^2 \varphi }{ \partial y^2 } + \frac{ \partial^2 \varphi }{ \partial z^2 } \end{eqnarray}
$\begin{array}{c|ccccc} x & \cdots & -1 & \cdots & 1 & \cdots \\ \hline f’(x) & + & 0 & – & 0 & + \\ \hline f(x) & \nearrow & e & \searrow & -e & \nearrow \end{array}$
\begin{array}{c|ccccc} x & \cdots & -1 & \cdots & 1 & \cdots \\ \hline f’(x) & + & 0 & – & 0 & + \\ \hline f(x) & \nearrow & e & \searrow & -e & \nearrow \end{array}